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a b s t r a c t 

In this paper, we introduce a novel three-dimensional (3D) reconstruction framework for ultrasound im- 

ages using a piecewise smooth Markov random field (MRF) model from irregularly spaced B-scan images 

obtained by freehand scanning. Freehand 3D ultrasound imaging is a useful system for various clinical 

applications, including image-guided surgeries and interventions, as well as diagnoses, due to the variety 

of its scan ranges and relatively low cost. The reconstruction process performs a key role in this system 

because its sampling irregularities may cause undesired artifacts, and ultrasound images generally suffer 

from noise and distortions. However, traditional approaches are based on simple geometric interpola- 

tions, such as pixel-based or distance-weighted methods, which are sensitive to sampling density and 

speckle noise. These approaches generally have an additional limitation of smoothing objects boundaries. 

To reduce speckle noise and preserve boundaries, we devised a piecewise smooth (PS) MRF model and 

developed its optimization algorithm. In our framework, we can easily apply an individual noise level 

for each image pixel, which is specified by the characteristics of an ultrasound probe, and possibly, the 

lateral and axial positions of an image. As a result, the reconstructed volume has sharp object bound- 

aries with reduced speckle noise and artifacts. Our PS-MRF model provides simple segmentation results 

within a reconstruction framework that is useful for various purposes, such as clear visualization. The 

corresponding optimization methods have also been developed, and we tested a virtual phantom and a 

physical phantom model. Experimental results show that our method outperforms existing methods in 

terms of interpolation and segmentation accuracy. With this method, all computations can be performed 

with practical time consumption and with an appropriate resolution, via parallel computing using graphic 

processing units. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Ultrasound 3D imaging has received significant attention in

any diagnostic areas, particularly obstetrics [1] and cardiology

2] . Not only 3D visualizations, such as in volume and surface ren-

ering, but also 2D sectional images at various orientations, may

rovide helpful clues for diagnoses. In addition, many studies have

emonstrated the applicability of 3D ultrasound imaging to image-

uided surgery and interventions, e.g., neurosurgery [3] , biopsy [4] ,

nd radiation therapy [5] . 

There are two types of probes that can generate 3D ultra-

ound data: dedicated 3D probes and conventional 2D probes with

echanical or freehand scanning. Dedicated 3D probes can scan

he 3D range rapidly and can generate volumetric images quickly.
∗ Corresponding author. Fax: + 82 42 350 3110. 
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owever, systems with dedicated 3D probes are more expensive,

nd the large contact surface of the probe makes it difficult to ob-

ain clean images of hidden structures under bones or gas. These

robes are larger and heavier than 2D probes, and their scanning

anges are limited by their size. 

A conventional probe generates 2D images initially, but 3D

ata can be obtained through sweeping the probe through the

arget volume while acquiring the position and orientation in-

ormation from a position sensor. Therefore, the scanning ranges

ave a greater variety than those of dedicated 3D probes. Sweep-

ng is conducted using a mechanical device or by hand. Mechan-

cal sweeping generates regularly spaced B-scan images along a

redefined path, while freehand sweeping generates irregularly

paced B-scan images along an arbitrary path. Mechanical devices

an sweep or rotate the volume with a uniform speed, but it

s impossible to scan larger volumes than the mechanics allows.

his limitation cannot be overcome through simply increasing the

ize of the system [6] . Compared with other scanning methods,

http://dx.doi.org/10.1016/j.cviu.2015.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.12.009&domain=pdf
mailto:hyshin@kaist.ac.kr
http://dx.doi.org/10.1016/j.cviu.2015.12.009


102 H. Moon et al. / Computer Vision and Image Understanding 151 (2016) 101–113 

Fig. 1. Conceptual diagram of the freehand 3D ultrasound imaging setup [5] . 
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freehand ultrasound imaging has more freedom in terms of scan-

ning range, and various normal 2D probes can be used directly.

These advantages are useful for various applications. Fig. 1 shows

a conceptual diagram of the freehand scanning system. 

In freehand scanning, because B-scan images are captured at

arbitrary locations and orientations, it is not guaranteed that the

physical image pixel locations will match the voxel positions.

Therefore, it is necessary to fill in missing voxel values in the vol-

ume of interest (VOI) from the scanned images. To obtain a bet-

ter reconstruction result, noise and artifacts should be considered

while interpolating the voxel values. 

However, many previous studies have focused on the calibra-

tion of the position sensors to accurately convert the image coor-

dinates to global coordinates [7] . Compared with the acquisition

process, the reconstruction process has been considered simply in

most works despite its importance for the quality of the final im-

ages of a volume. 

There are numerous considerations in the reconstruction step

to improve the volume quality. First, ultrasound images have var-

ious types of noise and artifacts, such as speckle noise, refraction,

shadowing, reverberation, and so on. Most artifacts originate from

the interaction between the ultrasound signal and inside materials,

i.e. they represent different patterns according to the inner mate-

rials. High-level processing is usually required in order to reduce

them. Meanwhile, speckle noise is typically distributed throughout

B-scan images. Speckle noise also shows unique patterns according

to the materials, but it is distributed all over images with high fre-

quency compared to other artifacts (see Fig. 2 (a)). This results in
Fig. 2. Noise and artifacts: (a) speckle noise, (b) transdu
egradation of the image quality and makes it difficult for viewers

o interpret these images and make diagnoses. Therefore, speckle

oise reduction is an important issue in ultrasound image analysis,

nd it has been investigated in previous works as post-processing

8] . However, it is not practically efficient to filter every scanned

mage in case of this study. 

Another important characteristic of ultrasound images that

hould be considered is that the spatial resolution is not uniform

ithin an image due to the transducer and signal characteristics.

ig. 2 (c) presents scan result of a phantom for quality assurance,

nd the image quality varies with the penetration depth as well

s the lateral direction. Therefore, B-scan image pixel data cannot

e considered to have the same confidence level over all pixels,

nd the data confidence should be considered according to pixel

ocation. 

However, most existing reconstruction methods involve simple

veraging or interpolation, i.e. pixel nearest neighbor (PNN), voxel

earest neighbor (VNN), distance weighted (DW), and radial basis

unction (RBF) methods [10,11] . These approaches interpolate the

oxel intensities from the sampled data by simply taking the near-

st neighbors (PNN and VNN), which are sensitive to the sampling

ensity, or weighted averages (DW and RBF). To improve the qual-

ty, various median filters are introduced [12] . In addition, Wen et

l. introduced a fast marching method to fill holes in order to over-

ome the limitations of the nearest-neighbor selection [13] . Instead

f spatial interpolation of the voxels or pixels, another approach for

he 3D reconstruction is to interpolate probe trajectories to create

ntermediate virtual scanning planes [14] . 
cer malfunction [9] , and (c) elevational focal zone. 
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Another important approach uses a Bayesian framework to infer

he voxel values in a grid [15,16] . This approach assumes a three-

imensional parametric function that has basis functions centered

t every voxel. Each basis function is determined by a correspond-

ng coefficient, and all coefficients of the voxel grid are modeled as

 3D grid Markov random field (MRF) with the typical 6-connected

eighborhood system [15] . In this approach, the observations are

ssumed to be Rayleigh distributed random variables to represent

peckle noises. 

However, one significant drawback of these methods is that

hey may not preserve object boundaries. Boundaries are easily

moothed out using these models because they assume uniform

moothness. To resolve this problem, we introduce a novel frame-

ork for reconstructing 3D ultrasound images from freehand scan-

ing. The primary goals of this research are the following: 

(1) Speckle noise reduction : Speckle noise results in images that

are noisy in ways such that the interpolated values could be

severely affected. Our first goal in this research is to reduce

the influence of speckle noise. 

(2) Boundary conservation : It can be helpful in many clinical

applications if surface boundaries are clearly observable in

ultrasound images. However, most state-of-the-art recon-

struction algorithms smoothly interpolate the sampled data

points. 

(3) Noise level ( data confidence ) consideration : Within one B-scan

image, the spatial resolution and image quality vary with the

location. If several data are observed in close physical loca-

tions, e.g., the same voxel, their confidence level should be

given significant consideration, rather than simply consider-

ing distances. 

(4) Computation time efficiency : In many clinical applications,

fast computation is required for practical use. In particular,

the algorithm needs to be insensitive to the amount of data

sampled from a wide scan range for the freehand system. 

To achieve the above goals, we adopt a Bayesian framework

o infer the voxel intensities from the observed data as in [15] .

hrough modeling the voxel grids as an MRF and applying an ob-

ervation model that considers the noise distribution, we can al-

eviate the effects of speckle noise in the 3D reconstruction pro-

ess. In addition, we use a piecewise smooth MRF for boundary

onservation through considering the ultrasound imaging charac-

eristics. MRF reconstruction models can be categorized into three

ypes: smooth models, piecewise constant (PC) models, and piece-

ise smooth (PS) models [17] . The smooth models do not consider

ignal discontinuities, so object boundaries are easily blurred. The

C models can preserve the discontinuities, but they separate the

radual changes of signals into several different regions. One of

he primary characteristics of ultrasound imaging is that the signal

ntensities for the same tissue may not be uniform due to atten-

ations or shadow effects. Therefore, the PC models also are not

ppropriate for ultrasound reconstruction. The PS models can rep-

esent regions with gradual changes and separate different regions,

nly with large jumps. For this reason, we propose a PS model that

onserves the boundary information of different regions. Within

ur framework, the noise levels can be simply applied without

hanging or adding terms. In addition, the computation to get the

ptimal solution is accelerated by parallelization on graphic pro-

essing units (GPUs). 

This paper is organized as follows. In Section 2 , an overview of

he Bayesian formulation of our problem is introduced, and several

ypes of prior models and corresponding optimization methods are

escribed. In Section 3 , experiments with synthetic US images and

eal images are described. In Section 4 , we discuss the advantages

nd limitations of the proposed method and suggest directions for

uture work. 
. Methods 

.1. Overview of MRF models 

The objective of reconstruction in this paper is to determine

he most representative intensity value at each voxel of regu-

arly spaced grids in a volume of interest (VOI) from an observed

ataset. Let us denote a vector of the voxel values of the VOI by

 = ( f 1 , . . . , f m 

) T , where m is the number of voxels. We propose

ome probabilistic inferences of f in the Bayesian framework. In

his paper, the likelihood and prior distributions are defined, and

he corresponding optimization methods that maximize the pos-

erior probability distribution functions (PDFs) are discussed. Ac-

ording to the Bayes rule, a posterior PDF p( f |D ) is proportional

o a prior PDF p(f ) and the likelihood function p( D| f ) , i.e. p( f |D ) ∝
p(f ) p( D| f ) . 

A dataset ( D) contains triplets of an observed pixel value ( y p ),

 world coordinate position vector ( x p ), and a noise variance ( σ 2 
p )

or all pixels in all B-scan images: D = { ( y p , x p , σ 2 
p ) | p = 1 , . . . , n } ,

here n is the number of pixels in the B-scan images. The most

ommon method to obtain the world coordinate is to use an opti-

al tracker. The optical tracking method used in this research is ex-

lained in Section 3.2.1 . The variance σ 2 
p can be determined from

he user input or by pre-processing the images, or any other char-

cteristics of a probe. As depicted in Fig. 2 (c), a general ultrasound

mage has a focal zone determined by the characteristics of the ul-

rasound signal and probes. As a result, the spatial resolution varies

epending on the location of a pixel in an image, and the data

ccuracy also varies according to pixel location. If there are two

ixel points from two different image planes and they have similar

istances from a voxel, then the point in the focal region is more

ikely to represent the original intensity. To enhance the quality of

D reconstruction, this type of data precision information as well

s the geometric distance must be applied. In our framework, this

an easily be applied to the model by changing the observation

ariance σ 2 
p for each p. 

The observation model defines the likelihood of the observed

ataset D with given f . All observed pixel values are assumed to

e independent normal random variables; therefore, the likelihood

unction is 

p ( D| f ) = 

n ∏ 

p=1 

φ
(
y p ;μp , σ

2 
p 

)
, (1) 

here φ( y p ;μp , σ 2 
p ) is a normal PDF with a mean μp and a vari-

nce σ 2 
p . In this paper, the mean μp is assumed to be μp = f v( x p ) ,

here v( x p ) is the nearest voxel index from x p . This mapping,

lso referred to as pixel nearest neighbor mapping [11] , simplifies

he model and calculations. This observation model implies that y p 
nly depends on v( x p ) . That is, a conditional independence is as-

umed such that p( y p | f ) = p( y p | f v( x p ) ) for any pixel index p. 

The prior distribution is from a priori knowledge about f . The

rior distribution contains information about what values of f are

referred and how much they are preferred. This paper constructs

he prior distribution using an MRF framework. An MRF is a set

f random variables that has a certain conditional independence

tructure that is graphically described using nodes and links [18] .

hroughout this paper, a node represents a voxel value or an ob-

erved pixel value, and a link represents a similarity relationship

etween two nodes. 

A basic example of an MRF model of a voxel grid is the 6-

onnected neighborhood model , which is referred to as the uniformly

mooth model in this paper, or the smooth model. The model has

ll possible links along the x , y , and z directions in the voxel grid.

urthermore, all observations are connected to the corresponding
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Fig. 3. Graphic representation of the smooth MRF model. 
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nearest voxels due to the assumed observation model. A graphic

representation of the smooth model is presented in Fig. 3. 

To model the discontinuities at some locations in the voxel

grid, it must be determined whether each similarity relationship is

turned on or off. Because it is difficult to optimize an energy func-

tion of a discontinuity preserving model, various methods are pro-

posed for each discontinuity preserving model. Sections 2.2 and 2.3

describe the mathematical formulations and optimization methods

of the smooth model and of the discontinuity preserving models,

respectively. 

2.2. Uniformly smooth model 

A prior probability distribution function of the smooth model is

p ( f ) ∝ exp 

( 

−ψ 

2 

( ∑ 

( v , v ′ ) ∈E 
( f v − f v ′ ) 

2 

) ) 

, (2)

where ψ is the smoothness strength coefficient, E is the set of all

links between voxels in the 6-connected neighborhood model , and

( v , v ′ ) is the link between two voxels, v and v ′ . Note that the MRF

is an undirected graph, i.e. ( v , v ′ ) and ( v ′ , v ) indicate the same link.

The posterior PDF of the smooth model is 

p ( f |D ) ∝ p ( D| f ) p ( f ) 

∝ exp 

( 

−1 

2 

n ∑ 

p=1 

τp 

(
f v ( p ) − y p 

)2 

) 

exp 

( 

−ψ 

2 

( ∑ 

( v , v ′ ) ∈E 
( f v − f v ′ ) 

2 

) ) 

∝ exp 

( 

−1 

2 

( 

n ∑ 

p=1 

τp 

(
f v ( p ) − y p 

)2 + ψ 

∑ 

( v , v ′ ) ∈E 
( f v − f v ′ ) 

2 

) ) 

, 

(3)

where τp = 1 /σ 2 
p , which indicates the precision of an observation.

This notation is used in the remaining sections. 

The voxel-based representation of the likelihood terms is more

convenient for later calculations and result expressions. For any

voxel index v , a set P v is a collection of pixel indices, in which the

nearest voxel is v : P v = { p| v(p) = v , p = 1 , . . . , n } ; then, all pixel

indices from 1 to n are classified into mutually disjoint sets P 1 to

P m 

. Thus, Eq. (3) can be rewritten as 

p ( f |D ) ∝ exp 

( 

−1 

2 

( 

m ∑ 

v =1 

∑ 

p∈ P v 
τp ( f v − y p ) 

2 + ψ 

∑ 

( v , v ′ ) ∈E 
( f v − f v ′ ) 

2 

) ) 

.

(4)
By the Hammersley-Clifford theorem [19] , the joint distribu-

ion of an MRF is a Gibbs distribution, which is represented as

p( f |D ) = 

1 
Z exp { −E( f , D ) } , where Z is a normalizing constant and

( f , D ) is an energy function. Therefore, maximizing a posteriori of

n MRF can be handled more easily by minimizing the correspond-

ng energy function because there is no exponential term, and the

ormalizing constant Z can be ignored. In this paper, the Gibbs

istribution is expressed as p( f |D ) = 

1 
Z exp { − 1 

2 E( f , D ) } in order to

liminate the common term 1 / 2 in the energy function. Therefore,

he energy function of the smooth model is 

 ( f , D ) = 

m ∑ 

v =1 

∑ 

p∈ P v 
τp ( f v − y p ) 

2 + ψ 

∑ 

( v , v ′ ) ∈E 
( f v − f v ′ ) 

2 
. (5)

Then, E( f , D ) becomes the function in the quadratic form of the

ecision variables f v and measured data y p , which are from the

ata likelihood and the prior distribution function. Smaller differ-

nces of neighboring variables and measured data induce a smaller

nergy, and this results in a higher posterior density. The optimal

olution can be obtained by solving ∇E = 0 : 

 

 

 

 

 

 

 

 

 

diag 

⎛ 

⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ 

p∈ P 1 
τp 

. . . ∑ 

p∈ P m 
τp 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎠ 

+ ψA 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

f = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

∑ 

p∈ P 1 
τp y p 

. . . ∑ 

p∈ P m 
τp y p 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, (6)

here A is the m × m matrix in which A( i, i ) is the number of links

onnected to the voxel i , and A( i, j ) = −1 if ( i, j ) ∈ E or ( j, i ) ∈ E .

ll other elements of A are zeroes. The conjugate gradient method

s a common method for solving this type of system of linear equa-

ions [20] . 

With the solution of Eq. (6) , the v th row of ( 6 ) is 

 ∑ 

p∈ P v 
τp + ψ | N v | 

) 

f ∗v − ψ 

∑ 

v ′ ∈ N v 
f ∗v ′ = 

∑ 

p∈ P v 
τp y p , (7)

here N v is a set of voxels connected to the v th voxel, | N v | is the

ardinality of the set, and f ∗v is the v th element of the solution

ector f ∗. Then, Eq. (7) can be rearranged as 

f ∗v = 

∑ 

p∈ P v 
τp y p + ψ 

∑ 

v ′ ∈ N v 
f ∗v ′ ∑ 

p∈ P v 
τp + ψ | N v | . (8)

Eq. (8) describes that each optimal value f ∗v is the weighted

verage of the observation pixels and neighbor voxel values with

eights τp and ψ for a pixel p in P v and neighbor voxels, respec-

ively. 
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Fig. 4. Conceptual differences between the edge-based model (left) and region-based model (right). 
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.3. Piecewise smooth models 

Basically, there are two possible formulations of the PS models:

dge-based and region-based labeling formulations. In the edge-

ased model, the formulation has an additional term c ( v , v ′ ) ∈ { 0 , 1 }
or each edge ( v , v ′ ) , which determines whether the link is con-

ected or not. In the region-based formulation, every voxel has a

abel l v ∈ L , where L is the set of possible labels. A link is only

onnected if two neighbor voxels have the same label. Graphic rep-

esentations of the two formulations are presented in Fig. 4 . There

re some variants that combine multiple models or methods for

he 2D image segmentation including a combined method of the

dge-based and region-based models [21] and an MRF of distinct

egions with an edge detector considering speckles [22] . Those

ethods have more considerations about the boundaries. However,

t is hard to apply directly to 3D reconstruction with sparse data.

ore context-aware methods are discussed in Section 4 . 

Of the two approaches, we adopted the region-based model for

hree reasons. First, the edge-based model easily produces unde-

irable short and separated boundaries [23] . It requires additional

omplex energy terms to prevent undesirable results, and the cor-

esponding optimization becomes much more difficult. If the pixel-

y-pixel signal jumps in ultrasound images are considered, it is dif-

cult to determine whether the signal jumps result from speckle

oise or underlying materials. Thus, it is more natural to consider

he regional properties than the edge properties. Another advan-

age of the region-based model is that the label values of the

egion-based method provide a simple segmentation result with-

ut additional processing, which is useful for a variety of purposes

24] . Finally, a significantly more robust and efficient optimization

ethod exists for the region-based model than the edge-based

odel. 

From a technical perspective, it is not trivial to compute the

ptimal solution of most piecewise smooth models because their

nergy functions have many local optima in general. However, the

abel-based formulation can be converted to a graph-cut problem

n a binary case, whose global solution can be found efficiently us-

ng the max-flow/min-cut algorithm [25] . Therefore, we formulated

he proposed MRF model as a binary piecewise smooth model

o represent the foreground and background in this research. The
ulti-label cases are discussed further in Section 4 . n  

Fig. 5. Graphical representation of
The energy function of the basic region-based formulation is 

 ( f , L , D ) = 

m ∑ 

v =1 

∑ 

p∈ P v 
τp ( f v − y p ) 

2 + ψ 

∑ 

( v , v ′ ) ∈E 

{
δl v , l v ′ ( f v − f v ′ ) 

2 

+ 

(
1 − δl v , l v ′ 

)
α2 

}
. (9) 

here L = { l v | v = 1 , . . . , m } , δl v , l v ′ is the Kronecker delta function

hich returns 1 when l v = l v ′ or 0 if l v � = l v ′ , and α is a param-

ter related to the level of signal jump. If the difference of two

eighboring values f v and f v ′ is more than α, then the energy be-

ween the two voxels is lowered with δl v , l v ′ = 0 , which turns off

he smoothness penalty. As explained before, we restricted our at-

ention to the binary labels case l v ∈ L = { 0 , 1 } in this study. As

een in Eq. (9) , the smoothing term between neighbor voxels is

nly applied when they belong to the same region. For abdominal

maging, soft tissue might belong to the background, and organs

r other structures might be foreground objects. The initial separa-

ion can be performed via pre-processing using an optimal global

hresholding method, such as Otsu’s thresholding [26] . 

.4. Optimization 

To obtain an optimal solution for Eq. (9) efficiently, we can con-

ert it to an alternative two-layered formulation, as discussed in

27] . The alternative formulation assumes that two separate layers

xist: g 0 = (g 0 
1 
, . . . , g 0 m 

) T and g 1 = (g 1 
1 
, . . . , g 1 m 

) T . A label l v is used to

elect one of the two signal values as the reconstructed value of

he v th voxel: f v = ( 1 − l v ) g 0 v + l v g 1 v , and a set of pixels P v is con-

ected to the selected layer. Fig. 5 is a graphical representation of

he alternative formulation. 

The alternative formulation is 

 

(
g 

0 , g 

1 , L , D 

)
= 

1 ∑ 

h =0 

m ∑ 

v =1 

δl v ,h 

( ∑ 

p∈ P v 
τp 

(
g h v − y p 

)2 + 

ψ 

2 

∑ 

v ′ ∈ N v 

(
g h v − g h v ′ 

)2 

) 

+ ψ α2 
∑ 

( v , v ′ ) ∈E 

(
1 − δl v , l v ′ 

)
. (10) 

The energy function consists of the data fitness, smooth-

ess, and the discontinuity terms. Note that the data fitness and
 the alternative formulation. 
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smoothness terms of the layers are turned on or off by the labels.

In addition, energy terms exist if any two neighbor voxels have dif-

ferent labels. As explained in Section 2.2 , E is a set of all links

in the 6-connected neighborhood model . However, an MRF with

the neighborhood model does not have any preference whether

boundaries are blocky or not when data is sparse [28] . In freehand

ultrasound scanning, there may be a significant number of voxels

that are unobserved, i.e. P v = ∅ , and it may cause undesired “block-

iness ” artifacts during the reconstruction process. Therefore, addi-

tional energy terms for boundary regularization are required in or-

der to avoid this artifact. One simple solution in our framework is

to expand the neighborhood system to include more neighbors in

various directions [28] . For example, in 2D MRFs, the 8-connected

neighborhood model , which connects all combinations of x and y

axis displacements, produces more smooth boundaries than the

4-connected neighborhood model . Likewise, the 26-connected neigh-

borhood model in 3D MRFs, which connects −1, 0, + 1 combina-

tions for all x , y , and z directions except itself, produces more

smooth boundaries than the 6-connected neighborhood model . Note

that the expanded neighborhood model is useful for regularizing

the boundary and not for interpolation properties. Therefore, we

simply expand the neighborhood model only for the label differ-

ence terms and scale the terms to the original 6-connected neigh-

borhood model to preserve the meaning of parameters. The final

energy function is 

E 
(
g 

0 , g 

1 , L , D 

)
= 

1 ∑ 

h =0 

m ∑ 

v =1 

δl v ,h 

( ∑ 

p∈ P v 
τp 

(
g h v − y p 

)2 + 

ψ 

2 

∑ 

v ′ ∈ N v 

(
g h v − g h v ′ 

)2 

) 

+ 

6 

26 

ψ α2 
∑ 

( v , v ′ ) ∈ E 26 

(
1 − δl v , l v ′ 

)
, (11)

where E 26 represents a set of all links in the 2 6-connected neigh-

borhood model . 

Algorithm 1 is a simple optimization algorithm for the energy

function in Eq. (10) , which was proposed by Grady and Alvino [27] ,

and it can be applied to minimize the extended energy function in

Eq. (11) . We also introduce an improved algorithm after explain-

ing Algorithm 1 . Algorithm 1 iterates some interpolation steps and

segmentation steps. In practice, a few iterations are sufficient to

converge, and the result of the method is robust regarding vari-

ations in the initial label setting [27] . These properties contrast

with the properties of traditional contour evolution methods to

optimize the Mumford-Shah functional while maintaining closed

boundaries. Those benefits result from a graph-cut method of seg-

mentation steps. 

With the given L 

′ , the energy function in Eq. (11) becomes

a quadratic form, so each of g 0 and g 1 can be minimized as in

the smooth model using the conjugate gradient method. However,

some elements of the layers do not affect the energy, so they can-

not be determined; for a voxel v , if the voxel and the neighbors

of the voxel do not belong to a label h , i.e. δl v ,h = 0 and δl ′ ,h = 0

v 

Algorithm 1 

Optimizing procedure of the Grady and Alvino [27] method. 

Function OptimizeEnergy( L initial , D, ψ , α, voxel grid configuration ) 

Output : ( L , g 0 , g 1 ) 
exit ← false 

L ′ ← L initial 

repeat 

Determine g 0 and g 1 by solving systems of linear equations with fixed L ′ 
Find L using a graph-cut algorithm with fixed g 0 and g 1 

if L = L ′ , then exit ← true 

L ′ ← L 
until exit = true 

o  

l  

o

 

c  

i  
or all v ′ ∈ N v , then the intensity value g h v does not incur any of

he data-fitness penalty or smoothness penalty. Hence, the inten-

ity value g h v is independent from the energy. However, all of the

alues in g 0 and g 1 should be determined, because the values are

sed in the next label optimization, which will be solved by the

raph-cut algorithm. To determine the energy-independent values,

he values can be interpolated from the already determined values,

hich affect the energy. For each layer, a uniformly smooth model

an be constructed with the fixed determined values of the layer

27] . Then, solving the uniformly smooth model produces interpo-

ated values for the undetermined values. This interpolation is the

ame as solving a discrete Laplace equation with fixed boundaries.

ee [27] for more details. 

After calculating g 0 and g 1 , each layer functions as preferred

alues of the corresponding label. A label set L should be selected

hat minimizes the energy function in Eq. (11) , which is affected by

he data-fitness terms and discontinuity penalty terms. The graph-

ut method, which has been used successfully for many computer

ision problems, can find the exact minimum label set. The graph-

ut method has two stages. First, it transforms an energy min-

mization problem into a max-flow/min-cut problem on a graph

29] , and then the transformed problem can be solved efficiently

sing graph algorithms [30,31] . 

The most significant advantages of Algorithm 1 are that the

ethod is not prone to become stuck in local minima, and the

ime consumption of the algorithm is not sensitive to the initial la-

el set L 

initial [27] . In our experiments, we set L 

initial for the outer

oxels of the voxel grid to 0 and the other voxels to 1. This type

f L 

initial presumes that there might be some objects surrounded

y background materials. The initial boundaries between label-0

oxels and label-1 voxels will be squeezed or expanded by the al-

orithm to reduce the boundary penalties in accordance with the

bserved data. If it can be certain that the outer voxels are back-

round voxels, then the outer labels can be fixed in the segmenta-

ion steps. After this, the boundaries cannot be expanded from the

nitial label set, and only squeezing is possible. 

We improved the algorithm in two ways. Experiments showed

hat the values of the label set L do not change significantly from

 

′ in most iterations. This indicates that the max-flow/min-cut

roblem for L is also similar to that of L 

′ . Therefore, the flow

nformation at the max-flow/min-cut problem could be reused in

he next problem to reduce computation time [32] . Next, we ap-

lied a hierarchical approach using multi-level grids. Algorithm 1

ometimes requires a large number of iterations to converge de-

ending on the problems, and each iteration on a larger grid con-

umes a considerable amount of time. In contrast, the iterations

n a small grid are much faster, because the information can prop-

gate over a longer distance per iteration. Therefore, we can cal-

ulate an approximate result on a coarse grid and reuse the ap-

roximate result as the initial data on a fine grid. This hierarchical

pproach can reduce the computation time significantly, particu-

arly for large grid problems. In addition, the reconstruction of the

oarse grid is robust to speckle noise because the noise is averaged

ut in the coarse grid. In this work, we used two levels, but more

evels could be applied when the grid size is large. The procedure

f the two-level grid method is described in Algorithm 2 . 

Algorithm 2 has an additional parameter ψ c , but it can be cal-

ulated from ψ and the grid configurations. Suppose that the voxel

nterval of the coarse grid is t-times larger than that of the fine
Algorithm 2 

Two-level grid optimizing procedure. 

( L c , g 0 c , g 
1 
c ) ← OptimizeEnergy( L initial 

c , D, ψ c , α, coarse-grid ) 

L initial ← nearest-neighbor interpolate L c and sample at fine-grid 

( L , g 0 , g 1 ) ← OptimizeEnergy( L initial , D, ψ , α, fine-grid ) 
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rid, then t × t × t voxels in the fine grid become one voxel in

he coarse grid. A set of t × t × t voxels is in contact with other

ets along the x , y , and z directions. Two neighbor sets have t × t

moothness energy of ψ , so ψ c should be t 2 ψ . 

To implement the algorithms, we used the GridCut software li-

rary as a graph-cut solver [30,33–35] . In addition, we applied a

ush-relabel algorithm in the Compute Unified Device Architecture

CUDA) of NVidia [36] to accelerate the computing times using

PUs [37] . The push-relabel algorithm traverses all voxels while

ushing excess flow or relabeling for each voxel, and all operations

an be parallelized. Our implementation allocates one thread per

oxel logically and conducts pushing or relabeling. 

. Results 

This section compares the results obtained by the MRF recon-

truction methods and other conventional methods. Herein, we de-

ote the smooth model as US-MRF and the modified formulation

n Eq. (11) of the PS model as PS-MRF. For comparison, the PNN

nd DW methods were selected because they exhibit good recon-

truction quality among the existing methods within a reasonable

omputation time [10,11] . The PNN and DW methods are imple-

ented based on pseudo-codes [11] . The PNN that was imple-

ented here locates the nearest neighbor voxel of each pixel for

n initial bin-filling step, and the remaining empty voxels are filled

ith a Gaussian weighted average value of local-neighbor bin-filled

oxels within a radius R . The DW method traverses all pixels of the

nput images while adding a weighted pixel value to voxels within

he radius R , where the weight is the inverse of the distance be-

ween the pixel and voxel [38] .The radius R was set to 1.5 mm for

ll experiments. Unfilled voxels were set to the average value of all

bservation pixel values. 

.1. Simulated data 

Simulated ultrasound images of a virtual phantom were gen-

rated using the FieldII software library [39,40] . There were two

all-shaped volumes, one of which had a higher density volume,

nd the other had a lower density volume than the background.

he phantom size was approximately 40 × 26 × 60 mm 

3 , and 50

mages were generated from the virtual probe directions sweeping

-direction with randomness, while the images were kept parallel

o the x -axis. A voxel grid was generated for the virtual phantom

ith 161 × 104 × 232 voxels with 0.25 mm spacing. Fig. 6 presents

he virtual model, a simulated image, and a yz -sectional plane of

he voxel grid where the image planes are represented by thick

ines. 

To evaluate the 3D reconstruction performance of various meth-

ds, the reconstruction errors, interpolation errors, segmentation
Fig. 6. Virtual phantom; the grid
rrors, and computation times were measured. As mentioned in

ections 1 and 2 , the objective of this paper is to reconstruct

he representative voxel values while preserving object boundaries.

ence, the reconstruction methods should minimize the recon-

truction error , 

econstruction error = 

1 

| V | 
∑ 

v ∈V 

∣∣ f v − f true 
v 

∣∣, (12) 

here f v is the value restored by each method, |V| is the car-

inality of the set V , and f true 
v is the true representative value of

he voxel v . To get the ground truth of f true 
v , we simulated 50 0 0

mages with random probe positions and directions, as shown in

ig. 6( c), and conducted the nearest-voxel mapping and averaging

f all pixels. 

Interpolation error measures the restoration performance by re-

oving a scanned image from the input dataset proposed in [10] .

lthough our reconstruction purpose is not to generate exactly the

ame data with the original ultrasound image including noises and

rtifacts, this evaluation assessed the capability of the reconstruc-

ion algorithm to fill in missing data regions. Let V remov ed denote

 set of the voxel indices that lose data. The interpolation error is

he average difference between the restored voxel values and the

in-filled voxel values of the removed image: 

nterpolation error = 

1 

| V remov ed | 
∑ 

v ∈ V remov ed 

∣∣∣∣∣ f v − 1 

| P v | 
∑ 

p∈ P v 
y p 

∣∣∣∣∣, (12a) 

here | V remov ed | and | P v | are the cardinalities of the correspond-

ng sets. In our experiments, we removed each image plane in the

ataset and calculated the interpolation error for the image. 

The segmentation error is the proportion of misclassified vox-

ls. The true label of a voxel is defined as foreground if the voxel

s in the higher or lower density area; otherwise, it is defined as

ackground . The true label set can be calculated because we know

he exact shape of the virtual phantom. The PS-MRF model gener-

tes an estimated label set, so we can compare this label set with

he true label set. For other reconstruction methods that do not

egment the voxel grid, we classified the reconstructed voxels us-

ng certain thresholds: background if k 1 ≤ f v ≤ k 2 ; otherwise, fore-

round . The threshold parameters k 1 and k 2 were selected by min-

mization of the segmentation error . This is the ideal threshold seg-

entation for comparisons, and this type of segmentation is not

ossible in reality. 

The PS-MRF requires some pre-processed inputs and parame-

ers. The variance of observation noise was set to σ 2 
p = 8 2 for all

p. The smoothness parameter was set to ψ = 1. The discontinuity

enalty was set to α = 8, which resulted in a rapid and stable jump

ver ‘8’ likely to be a boundary. 
 in (c) has 1 mm spacing. 
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Fig. 7. Comparison of sectional images generated using the four reconstruction methods. 
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The noise variance parameters σ 2 
p were determined by

measurement of the speckle noise variance from the sampled im-

ages. This measurement might not be very accurate. However,

obtaining very accurate σ 2 
p values is not important because σ 2 

p 

does not directly affect the smoothness of the results. Rather

than σ 2 
p itself, the ratio between the aggregate precision of a

voxel 
∑ 

p∈ P v 1 /σ
2 
p and the smoothness parameter ψ determines

the smoothness of the voxel v . Eq. (8) implies that a neighbor

voxel can be considered as another observation with a noise vari-

ance of 1 /ψ . Therefore, a neighbor voxel has a weight of σ 2 
p × ψ

observations within the constant σ 2 
p settings, because a neighbor

has the precision ψ , and an observation has the precision 1 /σ 2 
p .

In this experiment, the number of observations per voxel was ap-

proximately 25, on average, over the voxels that had at least one

observation, and a neighbor had a weight of 8 2 observations. The

ratio between the two numbers of observations enabled an almost

speckle-free reconstruction result in the experiment. The smaller

ψ , the closer to the original ultrasound image reconstruction result

that can be generated, but it is noisier. In this case, speckles might

be assigned to different labels, and this is undesirable. Therefore, a

higher discontinuity penalty α is recommended for a smaller ψ in

order to prevent the undesired separation of speckle noise in our

experiments. For example, some speckles were separated using a

different label with ψ = 0.125 and α = 10, but the parameters of

ψ = 0.125 and α = 15 produced clear object boundaries. 

We measured the computation times using a desktop com-

puter with an Intel i7-3770 CPU and NVidia GTX 780 graphics card

including 2304 CUDA cores. All CPU computations were single-

threaded for fair time comparisons. For the PS-MRF, the CPU and

GPU implementations were based on Algorithm 1 without reuse of

flows and Algorithm 2 with reuse of flows, respectively. The coarse

grid of Algorithm 2 is constructed with 2 mm voxel spacing. The

quality performance results for each method are summarized in

Table 1 . The computation time in Table 1 is the average time for

a reconstruction. As shown in Table 1 , the PS-MRF method out-

performed all other methods. From the computation perspective,

both the CPU and GPU implementations took 3 iterations on the

0.25 mm spaced grid. Hence, the speed up from 436.49 s to 9.41 s

is due to the reuse of flows and the computation power of the GPU.
Table 1 

Quality measures of the Two spheres results. 

Reconstruction 

error 

Interpolation 

error 

Segmentation 

error 

Computation 

time (s ) 

PNN 7 .68 8 .63 2 .06% 26 .97 

DW 6 .05 8 .25 1 .43% 391 .87 

US-MRF 6 .11 8 .24 1 .34% 14 .02 

PS-MRF 6 .03 8 .18 1 .33 % CPU: 436 .49 

GPU: 9 .41 F

o

Sectional images of the reconstructed 3D voxel grid with full

ata are presented in Fig. 7 with 0.25 mm voxel spacing. 

Fig. 8 presents the intensity profiles of the reconstructed vol-

mes along the x -axis at y = 63 and z = 140. The image plane

hat crossed y = 63 and z = 140 was removed for the reconstruc-

ion, so we could compare the reconstructed data and the origi-

al data that was removed at the reconstruction. As seen in Fig. 8 ,

he PNN and DW generated false speckle noises, and the DW and

S-MRF blurred the boundary information. In contrast, the PS-MRF

aptured speckle-free signal values while preserving the boundary

nformation. 

.2. Scanned data 

.2.1. Data acquisition 

To reconstruct a 3D model from a real ultrasound image, the

lobal position and orientation data of each image was measured

imultaneously by the optical tracking system depicted in Fig. 9. 

The pixel coordinates of the ultrasound image u = ( u, v , 0 , 1 ) T 
an be converted to the world coordinate x = ( x, y, z, 1 ) T by a

imple transformation x = T T 
W 

T M 

T 
T P 

M 

T I 
P 
u . Here, T T 

W 

is the world-

o-tracker coordinate transformation matrix, T M 

T 
represents the

racker-to-marker coordinate transformation, and T P M 

is the
ig. 8. Intensity profiles of the reconstructed volumes along the x -axis at the center 

f the data-removed section. 
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Fig. 9. Conceptual model of the scanning system [5] . 
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ransformation matrix of the marker-to-ultrasound probe. The 4 

4 scale matrix has diagonal elements ( s x , s y , 1, 1), which rep-

esent the pixel-spacing values of the ultrasound image. For the

robe calibration, the traditional crosswire phantom was used [7] ,

nd the T P M 

matrix and s x , s y values were obtained using the

evenberg-Marquardt method [5] . While scanning a VOI using a

alibrated ultrasound probe, our system automatically saved the

ltrasound images with their probe position at a frequency of

0 Hz. 

A liver phantom model was obtained via casting, using a frozen

elatin solution based on a silicone mold made of MoldMax 30

SmoothOn Inc., Easton, PA, USA). The initial shape of the liver was

btained from a 3D virtual model and created using a 3D printer to

ake a mold. Finally, we put the phantom liver into a gelatin so-

ution with a different concentration level to be scanned using the

ltrasound device (SonixTouch, Analogic Co., Peabody, MA, USA).

ll images were scanned with an L14-6 linear probe, and each B-

can image had 450 × 450 pixels. 

.2.2. Reconstruction results 

The 3D model was reconstructed using 149 ultrasound images

or 57 × 54 × 44 mm 

3 area (230 × 216 × 177 voxel grid with

.25 mm voxel spacing). The parameter values of ψ = 0 . 5 and

= 15 were used in the PS-MRF model. In this experiment, the

oise variance parameter σ 2 
p was applied differently according to

he position of the pixel in the image for the PS-MRF model. We

an observe that the images generated using our machine exhib-

ted a consistent focal zone. Approximately 30 pixel widths to left

nd right of the images and 100 pixel widths at the bottom of

mages were considered far from the focal zone; data in the non-

ocal zone exhibited degraded quality due to signal attenuation and

ower resolution. Therefore, we set σ 2 
p in the non-focal zone to

2 2 and σ 2 
p in the focal zone to 4 2 . Varying the coefficient σ 2 

p is
Fig. 10. Physical pha
articularly useful when accurate data and inaccurate data over-

ap. In our experiments, the probe moved back and forth creating

 “V” shape; thus, the focal zone and non-focal zone overlapped.

or the US-MRF model, σ 2 
p was set to 4 2 for all pixels. 

In terms of smoothing strength, the number of observations

er voxel was approximately 55, on average, for the voxels that

ad at least one observation, and a neighbor voxel had a weight

f 4 2 × 0 . 5 observations, if we assumed that all pixels had the

ame variance coefficient σ 2 
p = 4 . Hence, the smoothing strength

as much weaker than in previous experiments. We intended

he parameter settings to preserve small features in the vol-

me, and α was increased to be higher than in previous experi- 

ents to compensate the low smoothing strength, as discussed in

ection 3.1 . 

To evaluate the reconstruction quality, the interpolation errors

t the focal zone were measured. Due to the poor quality of the

riginal signals at the non-focal zone, we only compared intensity

alues of the focal zone in the removed scan image with the inten-

ity values of the reconstructed volume. In addition, we measured

urface differences because the ground truth of the surface model

 Fig. 10 (a)) was known in this case. For this purpose, we measured

urface feature points from the phantom liver using the optical

racker and converted them to global coordinates. We then found

he rigid transformation from the initial (virtual) surface model to

he phantom liver by the iterative closest points (ICP) method af-

er initial feature point matching. The transformed virtual surface

as used as a ground truth. Iso-surfaces were extracted from the

econstructed volumes, and we measured the Euclidean distance

rom each vertex of the transformed virtual surface model (ground

ruth) to the iso-surfaces. We computed root mean squares of er-

or (RMSE) as well as the mean and standard deviations of the

istances. For all other methods except PS-MRF, which does not
ntom models. 
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Table 2 

Quality measures of the Scanned data results. 

Interpolation 

error Surface error (mm) 

Computation 

time (s ) 

Mean ± standard deviation RMSE 

PNN 6 .38 1.02 ± 0.67 1 .22 55 .65 

DW 6 .64 1.03 ± 0.69 1 .24 328 .79 

US-MRF 6 .24 1.00 ± 0.71 1 .22 47 .93 

PS-MRF 5 .89 0.80 ± 0.68 1 .05 CPU: 25297 .79 

GPU: 22 .06 
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produce surface information, iso-surfaces were used for compari-

son. Specifically, the iso-surface level was set to 20, which provides

accurate surfaces of object boundaries. When computing the sur-

face errors, we only measured one-side distances from the ground

truth to the iso-surfaces to avoid the dark regions by signal atten-

uation in the deep scan area being included in the computation.

Quality measures are presented in Table 2. 

The PS-MRF method produced significant lower interpolation

error, because the reconstructed volumes of other methods except

the PS-MRF method were corrupted by the degraded signals of the

non-focal zone data, which is due to the fact that all input pixels

are considered as having the same precision. Moreover, the surface

error was minimized with the PS-MRF method. In terms of compu-

tation time, Algorithm 1 consumed 28 iterations, and Algorithm 2
Fig. 11. 2D sectional images of the reconstructed vo
onsumed just two iterations on the fine-grid because the energy

as almost minimized at the coarse-grid stage with a negligible

omputation time. As a result, the computation time gap between

PU with Algorithm 1 and GPU with Algorithm 2 was substantial. 

Figs. 11 and 12 show the sectional images and 3D surfaces of

he reconstructed models, respectively. For results that do not con-

ain boundary information (i.e. the PNN, DW, and US-MRF meth-

ds), the iso-surfaces at two different levels were drawn. 

The sectional images demonstrate that the PNN, DW, and US-

RF methods blurred the object boundaries and that the PNN and

W methods did not fill all voxels in the grid. These characteristics

ncrease the difficulty of further data analyses, such as segmenta-

ion and boundary detection. In contrast, the PS-MRF method pro-

ided clear boundaries, and all voxels were filled. As seen from the

so-surfaces, inaccurate boundaries were created under the object

ue to the gradual decay of the ultrasound signal. 

Fig. 13 presents the reconstruction result with (a) a constant σ 2 
p 

nd (b) a varying σ 2 
p . The vertical dark lines, which arise from the

xial border of the scan images and are indicated by red arrows,

re recovered by the data from the focal zone in Fig. 13 (b). We

lso note that the liver boundaries, which are indicated by blue ar-

ows in Fig. 13 (b), exhibited different reconstruction results. Some

oundaries exhibited less aliasing because lowering the precision

f the non-focal area causes the data fitness penalties of the en-

rgy function ( 11 ) to be lower. Consequently, the boundary penal-

ies affect the energy more than in case (a). 
lume ( xy , yz , and xz planes from left to right). 
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Fig. 12. 3D comparison via extraction of iso-surfaces. 

Fig. 13. PS-MRF reconstruction with consideration of (a) uniform and (b) varying noise models. 
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e  
. Conclusion and discussion 

We proposed and developed an MRF model to reconstruct a 3D

olume from freehand ultrasound images. Our model can reduce

peckle noise and can easily be expanded for a piecewise smooth

odel for boundary conservation. The region-based PS-MRF model

rovides a simple and intuitive formulation and generates high-

delity results from irregular and noisy input. This model is also

asily optimized for binary labels. For computational efficiency,

hich is critical for clinical applications such as image-guided in-

erventions, we proposed an improved algorithm and parallelized

he optimization step. In our experiments, the computation time

f Algorithm 2 using GPUs was at least46.39 times faster than

lgorithm 1 using a CPU. 

Our PS-MRF method was compared with traditional reconstruc-

ion methods using synthetic ultrasound images and real ultra-
ound images by assessing the methods in terms of the proposed

uality measures. The results demonstrated that the object bound-

ries generated by the PS-MRF model were significantly clearer

nd that the image noise was reduced significantly. The interpo-

ation and segmentation error values were low, while the compu-

ation was performed in a reasonable time using GPUs. Because a

imple classification can be performed simultaneously with the re-

onstruction step, clear 2D and 3D visualizations are possible with-

ut additional computation for various clinical and research pur-

oses (e.g. embryology). We also expect that our noise-reduced re-

onstruction will be useful for image-guided surgery and interven-

ions without radiation exposure. 

In our experiments, we simply determined the confidence level

f each pixel by dividing B-scan images into focal/non-focal zones.

owever, several studies have measured the confidence levels of

ach pixel in more systematic ways. In particular, [41] focused on
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creating an acoustic shadow map, and [42] proposed a method of

generating a confidence map including the shadow region. The re-

construction quality of our method can be further improved by

combining these approaches, although there are tradeoffs to in-

corporate the material/content-dependent processing in the recon-

struction step. Because the internal materials are not known in

the reconstruction step, content-dependent processing requires ad-

ditional computations for each B-scan image. Depending on clini-

cal applications, there can be trade-offs between the computation

time and quality in practical use. 

In many anatomical images, the use of multiple labels might

provide better reconstruction results than binary labels. The ap-

propriate cardinality of labels | L | can be determined using simple

intensity analyses, such as counting the peaks in a smoothed his-

togram, or any other classification, as a preprocessing step. Another

possibility of determining the number of labels is Bayesian model

comparison methods within the probabilistic inference framework.

If the number of labels is determined, the formulation of multi-

label cases can be extended from Eq. (11) . The energy function

consists of three types of penalty: data fitness, smoothness, and

boundary length. The data fitness and smoothness penalties at

voxel v occur only in the selected layer l v , and the boundary length

penalties occur when any two neighbor voxels have different la-

bels. Therefore, the energy function of the multi-label case can be

easily extended from Eq. (11) by setting the outer summation in-

dex h from 0 to k − 1 for the k -label formulation. 

From the algorithmic aspect, multi-label extension can be

achieved by modifying Algorithm 1 in two aspects: the interpo-

lation step and the segmentation step. The interpolation step is

straightforward for the multi-label case. If the number of labels

is L , there are L layers to interpolate. Each layer is interpolated

in the same way as the binary label case. In contrast, optimizing

multi-label segmentation is a NP-hard problem in contrast with

the binary label case [43] . However, there are efficient optimization

methods called α − β swap and α expansion, which are known to

perform well on a variety of computer vision problems [43] . 

As additional further work, the machine-dependent parameters

in the observation model, such as the variance coefficients σ 2 
p ,

should be estimated for various machines and probes as well as

for various materials. We have tested and used the value estimated

under fixed settings. However, an ultrasound image exhibits differ-

ent intensities and qualities according to the frequency and other

scanning parameters. Sensitivity analyses using such parameters

determined by the characteristics of the machines would be neces-

sary in order to optimize the user-defined parameters. The probe

characteristics, speckle strengths, and any other knowledge about

noise and artifacts could be applied. 
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