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In the finance industry, obtaining stable estimates for sensitivities of derivatives to price changes in an underlying asset is very
important from a practical point of view. However, this aim is often hindered by the absence of closed-form expressions for Greeks or
the requirement of an excessive computational workload due to the complexities of various exotic derivative structures. However, ad
hoc numerical schemes to produce stable Greeks such as nonlinear regression can result in nonsensical values. This article proposes a
fairing algorithm designed for the computation of gamma values of exotic derivatives. Examples are presented at exotic derivatives to
which the algorithm is applied and some analytical and numerical results are provided that show its usefulness in reducing the mean
square error of gamma estimates.
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1. Introduction

To any participant in the financial derivatives markets, the
sensitivities of derivative products in her portfolio are in-
dispensable data for hedging the market risks to which the
portfolio is exposed. Moreover, it is important to have these
so-called Greeks that are reasonably good and stable in a
sense to be made more precise. Several methods to ad-
dress this issue have been proposed that have had mixed
degrees of success depending on the payoff structures of
the derivatives. To name just a few of the methods, a Finite
Difference (FD) scheme is well summarized in Glasserman
(2004), a pathwise method and a likelihood ratio method
were proposed by Broadie and Glasserman (1996), and a
Malliavin calculus-based method was developed in Fournié
et al. (1999) and Fournié et al. (2001). And it is well known
that, in many cases, FD schemes are less reliable than other
methods when applicable. However, depending on the par-
ticular products of interest, we often have to resort to an FD
scheme because of failed regularity conditions (on payoff
functions or on underlying stochastic processes) or because
of final formulae that might be formidable to draw or dif-
ficult to implement even when all conditions are satisfied.

∗Corresponding author
Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/uiie.

For example, let us consider the following equity-linked
security whose underlying assets are S1 and S2. We call this
product ELS2 to emphasize its dependence on two equity
prices. The payoff is basically a function of the minimum
of two ratios Si

t /Si
0 ; that is,

Ŝt = min
{

S1
t

S1
0

,
S2

t

S2
0

}
, t ∈ [0, T],

where Si
t is the price of asset i at time t and T indicates the

maturity, and we have six early redemption dates ti = i T/6,
i = 1, . . . , 6, with redemption thresholds li > 0. In early
redemption the contract ends at time ti if a certain condition
on Ŝ is met at that time. More specifically,

� if Ŝti > li for some i for the first time, then the contract
expires at time ti with payoff 1 + ri to the investor;

� if there was no early redemption and min{Ŝt : 0 ≤ t ≤
T} > b , the payoff is one;

� the final payoff is ŜT otherwise.

Here min{Ŝt : 0 ≤ t ≤ T} is the minimum of daily closing
prices until maturity and b is the value of the lower knock-
in barrier. The computation of Greeks for this product is
non-trivial by any of the existing methods for sensitivity
estimation. ELS2 is a typical kind of equity derivative ac-
tively traded on Korean financial markets. Many financial
contracts, indeed, contain payoffs as complexly structured
as this example.
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Fig. 1. Price, delta, and gamma surfaces for ELS2 obtained using a FD scheme.

There are many payoff features that can be easily in-
corporated into any derivative contract. Simple examples
include digital and barrier features as in ELS2. If deriva-
tive products in a portfolio consist of various combinations
of such payoff features, then each combination might eas-
ily require a separate Greek calculation code to employ
non-FD methods. (In this article, we focus on sensitivities
with respect to the underlying stock price up to the sec-
ond degree.) In addition, one needs to run the code at each
parameter value in a certain range where the user wants
to see Greeks for the purpose of risk management. (One
exception is Giles and Glasserman (2006), where the au-
thors provide a variant of the pathwise method that gives
multiple Greeks at once.)

However, if one wants to implement an FD scheme, a
notable practical difficulty arises. Namely, the sensitivity
estimates become quite unstable especially when we take
higher-order sensitivities such as gammas. Figure 1 shows
the prices, deltas, and gammas for ELS2 computed by an
FD scheme in a rectangular range. Geometric Brownian
motions were assumed as the underlying asset price pro-
cesses. It is clear that the gammas fluctuate much wider
than the prices and the deltas. This instability has been
one of the big barriers in the implementation of Monte
Carlo methods in practice because it is essential to have a
robust way of calculating Greeks in a financial firm where
computations of Greeks need to be automated and various
derivatives portfolios are managed. This article is an at-

tempt to address some computational issues that appear in
applying FD schemes to sensitivity estimates for derivatives
that involve severe costs in implementing non-FD methods.
For a related work by the authors, we refer the reader to
Kang et al. (2012).

Now, we briefly summarize our approach to delta and
gamma computations using Monte Carlo simulation. First,
we assume that a Monte Carlo method provides price es-
timates at a set of initial asset values. They are given in
the form of confidence intervals or pairs of sample means
and sample variances from the Monte Carlo runs. Thus, we
work with a sequence of intervals in the case of a deriva-
tive on a single underlying asset or an array of intervals
for two underlying assets. We can safely assume that model
parameters except asset prices stay at their estimated values
during a few hours or a single trading day. Hence, once we
compute Greeks in a range of asset prices, hedging opera-
tions can be performed based on these values. The “circuit
breaker” in each exchange provides a natural range for this
preparatory Greek computation.

Starting with a set of sample means, we apply fairing iter-
ations to these values within fixed intervals that, throughout
this article, we set as being centered at sample means with a
half-width equal to one or one half times sample standard
errors. Then, we apply the ordinary FD scheme for delta
and gamma computations after the fairing algorithm stops
according to a certain stopping condition. This stopping
condition will be detailed in a later section. Hence, fairing
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iterations can be uniformly applied to derivatives with any
type of payoff functions or to any specification of stochastic
models.

Fairing is a Computer-Aided Design (CAD) technology
developed originally in the automotive industry to obtain
a surface with a smoother curvature distribution for high-
quality machining and aesthetic body shapes of vehicles.
Under the condition that the value function under consid-
eration is twice continuously differentiable with respect to
underlying assets prices, our new fairing approach is appli-
cable. We provide some motivating examples in Section 2.
A detailed procedure is presented in Section 3. Section 4 ex-
hibits numerical test results and Section 5 deals with some
analysis results for the method. We conclude in Section 6.

2. Motivation

Let Y(θ) be the payoff of interest where θ is a parameter. The
price is given by E[Y(θ)] under some probability measure
P. We set

α(θ) = E[Y(θ)]. (1)

We are looking for α′(θ) and α′′(θ) where θ varies in a certain
range. In this article, θ is set to be the underlying stock price.
In addition to the difficulties of applying existing methods
for those mathematical derivatives, it is often out of prac-
tical concerns that we are interested in computing discrete
delta and discrete gamma at given points {θ1, . . . , θn}. See,
e.g., Taleb (1997) on discrete rebalancing. We assume that
the points are equally spaced, say h = θi+1 − θi for each i .
The discrete delta (�i ) and gamma (�i ) for i = 1, . . . , n − 1
are then defined by

�i = α(θi+1) − α(θi−1)
2h

,

�i = α(θi+1) − 2α(θi ) + α(θi−1)
h2

.

We denote the Monte Carlo estimate at θ with m simula-
tion trials by Ym(θ). Then, the corresponding estimates of
discrete delta and gamma become

�̂i = Ym(θi+1) − Ym(θi−1)
2h

, (2)

�̂i = Ym(θi+1) − 2Ym(θi ) + Ym(θi−1)
h2

. (3)

These estimates can be regarded as the FD approximations
to the instantaneous delta and gamma values. To motivate
our approach, let us consider some examples that illustrate
the difficulties in obtaining reliable Greek estimates via FD
schemes. Throughout this article, we consider the following
four contracts with varying degrees of exoticness

CO: vanilla European call option (strike K = 100 and
maturity T = 4).

DO: cash-or-nothing digital option (K = 100, T = 4,
payoff = 0 or 10).

ELS1: structured security linked to the performance of
an underlying equity with early redemption fea-
tures and down barrier feature. This product can
be characterized by many discontinuities in the
payoff structure. Details of the payment plan of
this product are same as those of ELS2 intro-
duced in Section 1. The only difference is that
the worst performer is replaced by the normalized
price of the single underlying equity. In numeri-
cal experiments, we work with parameters T = 1
year, l1 = l2 = 0.95, l3 = l4 = 0.9, l5 = l6 = 0.85,
ri = 0.05 × i , and, finally, b = 0.7.

ELS2: Explained in Section 1 and the parameters are the
same as in ELS1.

The Black–Scholes model is used in the experiments;
however, it should be noted that our approach is indepen-
dent of any model specification, as becomes clear in the
subsequent section. As for CO and DO, we use the Black–
Scholes formulae to compute the true prices. As there is
no analytic or semi-analytic formula available for ELS1
or ELS2, Monte Carlo estimates with a billion simulation
trials are used as the true prices. The price curves from
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simulation with 105 paths as well as the true curves are plot-
ted in Figs. 2 to 4 for comparison. Volatility levels in those
figures are fixed at 30%. Also, in Fig. 4, the time-to-maturity
is 4 weeks, which is the same as CO and DO. Lastly, we note
that the antithetic variable and the common random tech-
nique are employed.

As a measure of the goodness of estimates, we con-
sider Root Mean Squared Error (RMSE) and Root Mean
Squared Relative Error (RMSRE). If α̂i and αi denote the
estimated value and the true value, respectively, then these
measures are defined as

RMSE =
√√√√ n∑

i=0

(α̂i − αi )2 and

RMSRE =
√√√√ n∑

i=0

(
α̂i − αi

α̃i

)2

, (4)

where α̃i = max{|αi |, 10−3(n + 1)−1 ∑n
j=0 |α j |}. The reason

for the introduction of α̃i is that, otherwise, it may exag-
gerate the error when the true value is too small. However,
there is a possibility to have large RMSRE values when αi
values are very small. Indeed, this is what we observe in
some of numerical tests reported below. However, usually

small true values do not cause problems in actual trading
operations.

For the standard European call option (Fig. 2) whose
payoff function is continuous, all three curves (price, delta,
and even gamma curve) are quite close to the true ones.
For the digital option with cash or not payoff (Fig. 3), the
gamma curve reveals a jigsaw shape. For ELS1 (Fig. 4), it
is highly unstable. Actually, even the delta curve deviates
from the true one under different conditions such as fewer
samples, longer maturity, or higher asset volatility.

Certainly, high fluctuations in gamma estimates are un-
desirable in terms of dynamic hedging of financial deriva-
tives. Now, recall that, as said in the Introduction, a risk
manager or a trader might want to pre-compute relevant
Greek values and retrieve appropriate numbers during the
day to enhance operational efficiency. Our approach is
based on the utilization of price estimates at different pa-
rameter values as well as the interval estimates (i.e., (1 − β)
confidence intervals):(

Ym(θi ) − zβ/2
ŝm(θi )√

n
, Ym(θi ) + zβ/2

ŝm(θi )√
m

)
,

where ŝm(θ) =
√

(m − 1)−1
∑m

i=1(Yi (θ) − Ym(θ))2. Basi-
cally, we use this extra information by allowing some

80 90 100 110 120
90

95

100

105

110

115

S

Price

RMSE = 0.0166 
RMSRE = 0.0002

 

 

80 90 100 110 120
0

0.5

1

1.5

2

S

Delta

RMSE = 0.0056 
RMSRE = 0.0146

 

 

80 90 100 110 120
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

S

Gamma

RMSE = 0.0134 
RMSRE = 0.2818

 

 

FD
True

Fig. 4. Price/delta/gamma of ELS1.



378 Kang et al.

flexibility in choosing the values for the FD scheme. Let
us fix a positive constant δ to determine the width of inter-
vals from which input values, say pi , for finite differencing
are chosen:

Ii =
(

Ym(θi ) − δ
ŝm(θi )√

m
, Ym(θi ) + δ

ŝm(θi )√
m

)
. (5)

We then put these pi values in place of Ym(θi ) in Equations
(2) and (3) to fair the Greek curves and obtain

�̂i (p) = pi+1 − pi−1

2h
, (6)

�̂i (p) = pi+1 − 2pi + pi−1

h2
(7)

for i = 1, . . . , n − 1, and call them the Greek estimates for
p = (p0, . . . , pn). We often call p a curve, meaning the piece-
wise linear curve connecting {(θi , pi ) : i = 0, . . . , n}.

Before we move onto the next section, let us discuss
some numerical implications of Ii . In the case of ELS1, 104

sample paths yield 0.01 to 0.11 USD of standard errors for
the price range taken in the test. This is less than 0.12%
of the share price. (The number is reduced to 0.04% for
105 paths.) Actually, the modified pi via the algorithm in
Section 3 are only within −0.1 to 0.03% (for 104 runs) and
−0.011 to 0.018% (for 105 runs) from the original price
estimates.

3. Curve/surface fairing

Facing the question in Section 2 about how to enhance the
gamma estimates, the following techniques seem to be two
natural approaches to the main problem that arises due to
the undesirable heavy fluctuations of Greek estimates; first,
signal processing techniques based on Fourier analysis and,
second, curve fairing techniques developed in the geometry
processing community, such as CAD. In this article, we
explore the avenue of curve fairing techniques.

In general, curve fairing is a method of changing the
original curve by only a small amount to obtain a new
curve with more appealing characteristics. A fast growing
research area in CAD is the “digital shape reconstruction”
(formerly called reverse engineering) field, which deals with
constructing a mathematical representation of the shape
from the measured data of a physical object possibly with
measurement noise; e.g., Salvi and Várady (2005). An es-
sential step in digital shape reconstruction is fairing, which
is also referred to as de-noising. (Some researchers argue
that de-noising is different from fairing in its problem for-
mulation; e.g., Sun et al. (2008).) The goal of fairing in
digital shape reconstruction is to remove possible noises
under the assumption that the original curve (or surface)
is smooth. Although this goal is perfectly in sync with our
needs, to the best of our knowledge there is no literature
applying this technique to the computation of prices and
hedging parameters of financial products. Among various

fairing algorithms, we start with a simple one proposed by
Cho and Choi (2001) and modify it to fit with our problem.
For the variety of alternative fairing algorithms, we refer
the reader to Sapidis and Farin (1990), Eck and Jaspert
(1994), Yamada et al. (1999), and Zhang et al. (2001).

Recall that the true function is α(θ) = E[Y(θ)] and we as-
sume that α(θ) is a smooth function of parameter θ . At each
θi , Ii defined by Equation (5) is a modified confidence inter-
val for α(θi ). Greek estimates such as delta or gamma are
defined by Equations (6) and (7) for original Monte Carlo
estimates or values obtained via fairing. As will be seen
later, delta estimates after fairing exhibit smoother shapes
even though our primary focus is on gamma estimates.

3.1. Local fairing formula for internal points

In order to obtain a curve with smooth gamma values, it
is desirable to have gradual changes of �̂i (p) in i . Thus, we
define the local fairness measure of a price curve p at θi as

εi (p) = |(�̂i+1(p) − �̂i (p)) − (�̂i (p) − �̂i−1(p))|
= |pi+2 − 4pi+1 + 6pi − 4pi−1 + pi−2|

h2
. (8)

(Note that εi (p) is actually a measure of “unfairness.” How-
ever, we will follow the terminology in the curve fairing liter-
ature such as Eck and Jaspert (1994), Cho and Choi (2001),
and many others.) Minimizing εi (p) becomes optimal when
we move �̂i (p) to the average of �̂i−1(p) and �̂i+1(p) (see
Fig. 5), which in turn yields the optimal position of pi as

p∗
i = 1

3
(4m1 − m2) where m1 = 1

2
(pi+1 + pi−1),

m2 = 1
2

(pi+2 + pi−2). (9)

Hence, the optimal position of pi can be interpreted as the
1:4 extrapolation point between the mid-point of the first-
order neighbors pi±1 and the mid-point of the second-order
neighbors pi±2, as shown in Fig. 6.

3.2. Considerations for boundary points

There are various ways of imposing boundary conditions,
including local approximations such as cubic curve fit-
ting. However, extensive numerical tests suggested that
there is no single method that performs well when com-
pared with the naı̈ve one, which fixes four boundary points

�
θi−1 θi θi+1

Γi−1
Γi

Γi+1

�

Fig. 5. Optimal position among three points.
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pi−1

pi

pi+1

pi+2

p∗i�

Fig. 6. Optimal position among five points.

p0, p1, pn−1, pn at the original price estimates. Hence, in our
numerical implementation, we fix those boundary points.

3.3. Fairing algorithm

Now, we are ready to describe the algorithm for curve
fairing. We begin with the initial discrete price curve
p0 = {pi : i = 0, . . . , n}. Let pk = {pi,k : i = 0, . . . , n} de-
note the discrete curve obtained after the kth iteration.
We compute pk by applying the local fairing formula (9) to
pk−1; i.e., pi,k+1 = p∗

i,k with pi,0 = pi . However, this simple
setting is modified to reflect the following two concerns.

Damping factor: Blind application of the local fairing
scheme may result in oscillations as shown in Fig. 7. This
can be explained by an analogy to a swinging pendulum
without any resistance, which will swing forever. To avoid
this situation, a damping factor is introduced. Let vi =
p∗

i,k − pi,k. Then the new position becomes pi,k+1 = pi,k +
τvi , where τ ∈ [0, 1] is the damping factor. If we use a large
value for τ (near one), resulting curves from each iteration
become unstable, whereas small τ (near zero) results in
slow convergence. From numerical tests, we found that τ =
0.5 gives a reasonable convergence speed. More detailed
analysis is done in Section 5. The reader is referred to, for
example, Cho and Choi (2001) for additional discussions
regarding damping factors.

Fairing tolerance: Equation (9) may give optimal points
that are far from the original ones. Since it is desirable that
altered price estimates from fairing are still good reference
values for true prices, we confine the movement of each
data point pi to Ii where δ is the fairing tolerance; i.e.,

|pi,k − pi | < δŝn(θi )/
√

n. In our numerical tests, we use δ =
1 so that each pi,k stays within one standard error from pi .
Combining the above two issues, we get the following
iterative algorithm:

Algorithm Gamma Curve Fairing
do {

for i = 2 to n − 2 {
compute p∗

i,k using (9);
vi = p∗

i,k − pi,k;
wi = pi,k + τvi − pi:

if wi > δŝn(θi )/
√

n, then wi = δŝn
(θi )/

√
n;

if wi < −δŝn(θi )/
√

n, then wi =
−δŝn(θi )/

√
n;

pi,k+1 = pi + wi;
}

} while (stopping condition is not met)

3.4. Stopping condition

The remaining question is when to stop the iteration in
the algorithm. Figure 8 shows the change in gamma curves
of DO as the number of iterations increases. Notice that
too many fairing iterations could be harmful, resulting in
somewhat flattened gamma curves.

Fairness of a curve may have different meanings in
different applications, depending on the requirements as
discussed in Salvi and Várady (2005). For the discretely
represented curve as we have in our problem, we will follow
the suggestion in Eck and Jaspert (1994), where the global
fairness of a curve is defined by ε = ∑

(κ ′′
i )2 where κi is the

curvature of the curve at θi . As it is not straightforward
to define the term κ ′′

i for a discrete curve, we approximate
κ ′′

i in the same way that we approximate κi by �̂i (p), the
second-order difference of price estimates. In other words,
using �̂i (p), we set

ε(p) =
∑

i

((�̂i+1(p) − �̂i (p)) − (�̂i (p) − �̂i−1(p)))2

=
∑

i

εi (p)2,

�
θi−1 θi θi+1 θi θi+1

pk,i−2

pk,i−1

pk,i

pk,i+1

pk,i+2

p∗k,i−2

p∗k,i−1

p∗k,i

p∗k,i+1

p∗k,i+2

�
θi−1 θi θi+1 θi θi+1

p∗k,i−2

p∗k,i−1
p∗k,i

p∗k,i+1

p∗k,i+2
pk,i−2
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Fig. 7. Oscillations in fairing iterations.
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where εi (p) is the local fairness defined in Equation (8).
With this global fairness measure, we continue the fairing
algorithm in Section 3.3 while ε(p) is decreasing or while
the ratio of measurements from two consecutive iterations
is larger than some threshold value. Table 1 shows the global
fairness measurements for the original price curve, the out-
put of the fairing algorithm, and the true price curve. All
necessary parameter specifications are explained in Sec-
tion 4.

3.5. Extension to surface fairing

The curve fairing algorithm above can be easily modified
for a price surface that consists of a two-dimensional array
of data points. The relevant parameters are, then, the under-
lying asset prices (θ1, θ2). Since each true price α(θ1

i , θ2
j ) on

the price surface is located on two cross-sectional curves
α(θ1

i , ·) and α(·, θ2
j ), we can apply the curve fairing tech-

nique independently and then the two resulting positions
are averaged. We will omit the details of surface fairing
since the reader can easily follow the main idea.

Table 1. Reduction of fairness measures for ELS2, number of
sample paths = 105

Fairness measure

Maturity None Fairing True

1M 0.701 971 0.128 094 0.089 540
3M 1.208 936 0.110 894 0.023 177
5M 1.448 335 0.095 314 0.013 826
7M 1.670 309 0.086 091 0.018 881
9M 1.436 607 0.061 357 0.010 141
11M 1.722 928 0.036 982 0.012 825

4. Numerical tests

We conducted numerical experiments on the performance
of the fairing algorithm, focusing on four contingent claims
(CO, DO, ELS1, and ELS2) whose payoff structures were
described in Section 2. The asset price dynamics of inter-
est was assumed to follow a geometric Brownian motion.
Other parameters used in the tests are as follows: for CO
and DO, we fixed the maturity equal to 4 weeks and varied
the level of asset volatility from 10% to 50% with a step
size of 10% while for the other two contracts we fixed the
volatility parameters and correlation level (volatility 30%
for ELS1, 30% and 40% for the two assets in ELS2 with
correlation 0.6) and varied the maturities from 1 month
to 11 months. Even though we do not report it here, the
performance of the algorithm for ELS1 and ELS2 turned
out to be very similar for different volatility and correlation
specifications.

For the benchmark values to be compared with algo-
rithm outputs, analytical closed-form formulae for CO
and DO were used; however, for the other two exotic
securities, we used the values obtained from a billion sim-
ulation trials. For all contracts, 104, 105, and 106 sim-
ulated paths were used to produce price and Greek
estimates.

Results are listed in Tables A1 to A12 in Appendix A.
Recall that we constructed delta and gamma curves or sur-
faces by applying an FD scheme to price estimates from
the usual Monte Carlo computations. The range of the pa-
rameter θ was {84, . . . , 116}. Therefore, we computed delta
and gamma estimates for θ ∈ {85, . . . , 115}. Through fair-
ing, new price estimates or, put differently, new price curves
or surfaces were generated, which in turn yielded new delta
and gamma curves or surfaces. The performance measures
employed were RMSE and RMSRE as in Equation (4).
The effectiveness of fairing is essentially captured by the



Fairing the gamma 381

ratios of these measures from the original FD estimates
and the faired estimates.

There are three main observations that can be made.
First, we do not see much improvement for CO where the
ratios for price/delta/gamma are greater than one in sev-
eral places and close to one even when they are less than one.
However, the results improve quite a bit as discontinuities
start to kick in. Second, we see much better performance
for gammas rather than prices or deltas. Intuitively, this can
be understood as a result of the fairness measure that we
are using to smooth gamma estimates. Finally, if we closely
look at the RMSEs of gamma values from the faired esti-
mates with 104 sample paths, then the numbers mostly lie
somewhere between the RMSEs of gamma values from the
original Monte Carlo estimates with 105 (Table A10) and
106 (Table A12) sample paths. Consequently, at least for se-
curities covered in this article, it is seen that the algorithm
performs better for more exotic securities and for gamma
estimates. In addition, the computational savings seem to
be between 10 and 100 times, which is remarkable consider-
ing that the processing time for the algorithm is negligible,
not to mention the ease of coding.

Now, Figs. A1 to A3 in Appendix A present how the orig-
inal gamma curves for CO, DO, and ELS1 are changed after
fairing. We do this only for gamma curves as the improve-
ment for price/delta estimates is not as much as gamma
estimates. For Fig. A1, the asset volatility is set equal to
30%. We note that the fluctuations of gammas are miti-
gated after fairing. The other figures depict price/Greek
estimates corresponding to ELS2 with 105 trials. To see the
changes from the original values, Fig. A4 needs to be com-
pared with Fig. 1. Figure A5 amplifies this for �11 for the
reader’s convenience.

Remark 1. We observe very large RMSRE values in some
parts of the tables; see, e.g., return on the gamma values of
Tables A4 to A6. Even though RMSRE works fine most of
the time, it can return an absurdly large value when a true
value is very close to zero. This feature of the RMSRE can
lead to somewhat strange behavior in the outcomes, but
such small values do not lead to practical concerns.

5. Analysis of fairing

In this section, we give some analytical and numerical re-
sults that support the use of fairing in the Monte Carlo
simulation context. To this end, let us assume that we
have point estimates pi for the unknown function values
αi = α(i/n) for i = 0, . . . , n; i.e., θi = i/n where α(·) is de-
fined as in Equation (1). We deliberately focus on analyz-
ing the effects of the first iteration of fairing on the mean
square error of gamma estimates. This is to obtain some
intuition about the method without becoming lost in the
analysis, which becomes extremely complicated as further

iterations are performed. For notational convenience, we
set pi = pi,0 = Ym(i/n).

In Section 5.1, we deal with the case where the pi are in-
dependent of each other. This happens when we do not em-
ploy the common random number technique. Even though
this technique is frequently used and thus the analysis in the
subsection does not apply in such a case, it greatly simplifies
computations and yields analytical results. In Section 5.2,
we investigate how a correlation structure between the pi
is generated via simple examples and conduct a numeri-
cal experiment to see how correlation structures affect the
performance of the algorithm.

5.1. Independent case

Throughout this subsection, we assume that Zi := pi − αi
are independent and identically distributed as N (0, σ 2).
The assumption of normal distribution is not harmful as
long as the number of simulation trials is large enough.
However, the same variance σ 2 at all points is not guaran-
teed because the variance E[(Y(i/n) − αi )2] depends on the
Y(·), which could be quite different from point to point.
Nevertheless, we can consider this σ 2 as a sort of maxi-
mal possible variance that point estimates pi have, so that
we can see how fairing works even in the worst case. Re-
garding the independence, we deal with the correlated pi
case in the following section. However, at least it should
be noted that this correlation structure of the pi is quite
different from a perfect correlation case as long as the pay-
off function has exotic features. For this reason and for the
analytical tractability, the independence assumption on the
Zi is imposed.

Let us denote the vector (−1/6, 2/3, −1, 2/3, −1/6) by
ϕ. Then, from the definition of p∗

i in Equation (9), we
obtain

p∗
i − pi = 4(pi+1 + pi−1)

6
− pi+2 + pi−2

6
− pi

= −�i h4 + ϕ × Zi

for the interior points (i = 2, . . . , n − 2) where h = n−1,
Zi = (Zi−2, . . . , Zi+2), and

�i = 1
h4

(
1
6
αi+2 − 2

3
αi+1 + αi − 2

3
αi−1 + 1

6
αi−2

)
.

If we write �i for the approximate value of the second-order
derivative of the function α(·) using to finite difference, then
�i can be written as h−2(�i+1 − 2�i + �i−1), which is an
approximate value for the fourth-order derivative of α(·) at
θi . After the first iteration, we get

pi,1 = pi + g(τ (p∗
i − pi )), where

g(x) = x1{|x|≤δσ } + δσ1{x>δσ } − δσ1{x<−δσ }.

Recall that τ and δ stand for the damping factor and the
fairing tolerance, respectively. Then, finally, we have the es-
timates for the �i from fairing: �i,1 = h−2(pi+1,1 − 2pi,1 +
pi−1,1).
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As a measure of goodness of the estimates �i,1, we use
the Mean Square Error (MSE):

1
n − 1

n−1∑
i=1

E[(�i,1 − �i )2], (10)

as n increases. Note that this MSE can be rewritten as

1
n − 1

n−3∑
i=3

E[(�i,1 − �i )2]

= 1
(n − 1)h4

n−3∑
i=3

E[(pi+1,1 − 2pi,1 + pi−1,1

−(αi+1 − 2αi + αi−1))2]

= 1
(n − 1)h4

n−3∑
i=3

E[(Ãi+1 − 2Ãi + Ãi−1)2]

plus the sum of the summands at i = 1, 2, n − 2, n −
1, where Ãi = Zi + g(−τ�i h4 + τϕ × Zi ). The first two
terms and the last two terms are treated separately because
they involve pi,1 obtained from the fairing algorithm at
boundary points. The next proposition gives us an upper
bound that is more amenable to analysis than the MSE
itself.

Lemma 1. The MSE (10) is bounded by

1
(n − 1)h4

n−3∑
i=3

E
[
(Ai+1 − 2Ai + Ai−1)2] ,

where Ai = Zi + g(τϕ × Zi ), plus extra terms:

1
(n − 1)h4

n−3∑
i=3

[
4σ

(√
3
π

+ 2δ

)
ζi + ζ 2

i

]

+ 4σ 2

(n − 1)h4

[
16δ2 + 16δ

√
3
π

+ 6

]
,

with ζi = |τ�i+1h4| ∧ (δσ ) + 2|τ�i h4| ∧ (δσ ) +
|τ�i−1h4| ∧ (δσ ).

Proof. See Appendix B. �
We aim to compare the MSE (10) with the MSE for �̂i ,

which is the estimate for �i with no fairing algorithm ap-
plied. The latter is easily shown to be 6σ 2/h4. Then, the
extra terms in the above lemma can be considered neg-
ligible for all large values of n when divided by 6σ 2/h4.
Indeed, if maxt∈[0,1] |α′′(t)| is well defined and finite, then
each |�i h4| = h2|�i+1 − 2�i + �i−1| is bounded by Kh2 for
some constant K because (αi+1 − 2αi + αi−1)/h2 converges
as h decreases. Hence, the first term is O(h2). Moreover, if
α(·) has bounded fourth derivatives on [0, 1], then by a sim-
ilar observation we have that this term is O(h4). The second
one in the extra terms is clearly O(h). Consequently, it is
enough to consider

1
6(n − 1)σ 2

n−3∑
i=3

E
[
(Ai+1 − 2Ai + Ai−1)2] (11)

to measure the performance of fairing algorithm on the
MSE of gamma estimates approximately.

Proposition 1. The quantity (11) is given by (n − 5)/(n − 1)
times.

1 + δ2 P(|Y| > x) − 2
√

70δ

3
E[Y; Y > x]

+ 35τ (τ − 2)
18

E
[
Y2; |Y| ≤ x

]
+ 2δ2

3
P(Y > x, Y′ > x) − 2δ2

3
P(Y > x, Y′ < −x)

+ 2
√

70τδ

9
E[Y; |Y| ≤ x, Y′ > x]

+ 35τ 2

54
E[YY′; |Y| ≤ x, |Y′| ≤ x]

− 8δ2

3
P(Y > x, Y′′ > x) + 8δ2

3
P(Y > x, Y′′ < −x)

− 8
√

70τδ

9
E[Y; |Y| ≤ x, Y′′ > x]

− 70τ 2

27
E[YY′′; |Y| ≤ x, |Y′′| ≤ x], (12)

where x = 6δ/(
√

70τ ) and Y, Y′, Y′′ are correlated stan-
dard normal random variables with Corr(Y, Y′) = 0.4 and
Corr(Y, Y′′) = −0.8.

Proof. See Appendix B. �

Numerical implementation of Equation (12) can be done
using softwares such as MATLAB, which contains Proba-
bility Density Functions (PDFs) and Cumulative Distribu-
tion Functions (CDFs) for standard normal random vari-
ables and multivariate normal random variables. For the
terms that involve Y only, we can further simplify them
using the following formulae:

E[Y; Y > x] = φ(x),
E[Y2; |Y| ≤ x] = −2xφ(x) + 2�(x) − 1,

where φ(·) and �(·) are the PDF and the CDF of a standard
normal.

Results of numerical experiments are shown in Fig. 9.
The graphs exhibit the behavior of this function depending
on δ and τ . We can see the effectiveness of the fairing
algorithm in reducing the MSE of gamma estimates for
appropriately chosen damping factor τ . This ratio of the
MSEs seems to be minimized when τ is in a neighborhood
of 0.5, which coincides with our choice of τ = 0.5 in the
previous sections.

5.2. Dependent case

Now, let us look at two examples to illustrate how payoff
functions affect the resulting correlation structure of the
estimates pi and thus that of the Zi . The first example is
when the payoff function is 1{S(x)≥0.5} and S(x) = xU, where
U is a uniform random variable with values in [0, 1]. Thus,
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Fig. 9. The effects of δ and τ on the ratio of MSEs for �i,1 and �̂i .

the true price (or expected payoff) is α(x) = (1 − 1/(2x))+
and the corresponding Monte Carlo estimates are given by

pi = 1
m

m∑
k=1

1{Uk≥n/(2i )}, i = 0, . . . , n,

after m simulation trials where the Uk are independent and
identically distributed uniform random variables. It is also
easy to compute the variance and covariance of pi . With
i < j

Var(pi ) = 1
m

αi (1 − αi ) = (2i/n − 1)+

4i2m/n2
,

Cov(pi , p j ) = 1
m

αi (1 − α j ) = (2i/n − 1)+

4i jm/n2
,

from which we notice that the correlation matters only when
i/n > 0.5 and

Corr(pi , p j ) =
√

2i − n
2 j − n

.

For comparison, consider the second payoff function given
by S(x) = xU itself. Then, α(x) = x/2 and the correlation
is always one. Therefore, when the payoff function involves
more exotic features with discontinuities, we expect that
the correlation structure would exhibit more apparent de-
parture from the perfect correlation case. This leads to
greatly fluctuating discrete gamma estimates and conse-
quently the common random number technique becomes
non-satisfactory in producing stable gammas.

For the rest of this section, we investigate how the
algorithm performs in the presence of non-trivial cor-
relation structures. Let τ be fixed. For a given corre-
lation structure, we generate correlated normal random
vectors of length 7. Using those random vectors, we
compute E[(Ai+1 − 2Ai + Ai−1)2] with and without fair-
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Fig. 10. The effects of τ on the ratio of MSEs, using 1000 randomly
generated correlation structures.

ing applied, where the expectations are set as the av-
erages of 104 trials. Finally, the approximate ratio of
MSEs is computed for this fixed τ and fixed correlation
structure.

To see the average performance of the algorithm based
on many different correlation structures, we used 1000 ran-
dom instances of correlation structures. Then, for each fixed
τ , the mean and standard deviation of approximate ratios
of MSEs were obtained. Figure 10 shows those values for
damping factor τ varying in [0, 1] together with ±1 stan-
dard deviations. We observe a similar performance as in
Fig. 9. There could be many different ways to produce var-
ious instances of correlation structures. One simple way we
take here is to generate a 7 × 7 matrix such that entries are
independent standard normals. If we divide each row by
its magnitude and denote the resulting matrix by F, then
Z = FW with W standard normal vector of size 7 becomes
correlated normals.

Remark 2. So far, we have discussed the effectiveness of
the fairing algorithm in terms of MSEs by focusing on
the first iteration of the algorithm. Instead, we can also
analyze the algorithm by looking at some specific exam-
ples. Figures 11 and 12 present the ratios of MSEs of
faired estimates and the original FD estimates when we
vary τ and δ, respectively. The contingent claim used is DO
from Section 4, but we observe similar behaviors for other
examples.

Even though the analysis of the first iteration shows that
the optimal τ seems to be around 0.5, the MSE ratio flattens
as the number of iterations increases, making the fairing re-
sult insensitive to τ as shown in Fig. 11. However, for small
τ values, the algorithm requires a large number of itera-
tions, slowing down the convergence. On the other hand,
for the examples used in this article, we found that the
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Fig. 11. The effects of τ on the ratio of MSEs for DO with δ = 1: (left) 104 paths and (right) 106 paths.
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fairing algorithm may fail to converge for large τ values as
in Fig. 13. (The algorithm converges for every τ < 0.75 in
all numerical tests conducted.) Therefore, τ = 0.5 can be
regarded as a reasonable choice that achieves convergence
and efficiency.

Regarding fairing tolerance, the ratio of MSEs decreases
as δ increases, as one can easily expect. However, we ob-
serve from curves of the MSE ratio that there is very little
improvement by increasing δ when δ is greater than one. See
Fig. 12 for an illustration of a typical case. On the other
hand, it would not be desirable to alter final price estimates
too much from the original Monte Carlo estimates. Hence,
we suggest using δ between one and 1.5 as a practical choice
for algorithm effectiveness; i.e., we change price estimates
within one or a bit larger standard error range. Note that
we used δ = 1 for the numerical tests in Section 4.

6. Concluding remarks

Fairing is a collection of techniques that have been used
in digital shape reconstruction. We introduced a simple
curve/surface fairing algorithm to achieve reliable gamma
estimates for complex financial derivatives. Instead of
smoothing gamma curves or surfaces themselves, the al-
gorithm varies the price estimates pi within a small interval
[pi − δσ, pi + δσ ] so that the new price estimates are still
good candidates for the true prices. This small interval is
determined by the fairing tolerance δ. Another important
parameter in the algorithm is the damping factor τ , which
controls the oscillation of estimates from one iteration to
the next.

Pictorial and numerical examples are provided to demon-
strate the performance of the method for complex exotic
equity derivatives that are currently traded in Korean fi-
nancial markets with great popularity. With no extra cost
of applying the algorithm (as it is simple and fast), we ob-
served that more stable gamma values are produced. Since
Monte Carlo simulation is often the only method to rely on
when it comes to the pricing and hedging of exotic deriva-
tives, the importance of reliable and stable gamma values
cannot be overemphasized.

Finally, we showed the performance of the fairing algo-
rithm in terms of relative MSEs of the gamma estimates �i,1
after the first iteration with respect to the gamma estimates
�̂i without fairing. It is shown that it achieves more than on
80% decrease in the MSE with the damping factor τ ≈ 0.5.
Also, through examples, we demonstrated that parameter
values τ = 0.5 and δ between one and 1.5 are a reasonable
choice in implementing the algorithm.
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Appendix A: Numerical results
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Fig. A1. Gamma curves for CO.
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Table A1. Fairing performance for CO, number of sample paths = 104

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.008 431 0.010 312 1.223 6.056 399 3.440 069 0.568
0.2 0.009 865 0.011 016 1.117 6.495 915 2.188 127 0.337
0.3 0.004 483 0.011 717 2.614 0.754 664 1.288 579 1.707
0.4 0.043 476 0.030 359 0.698 2.532 658 2.064 095 0.815
0.5 0.019 260 0.039 004 2.025 1.286 652 1.877 689 1.459

Delta 0.1 0.001 725 0.002 754 1.596 6.227 193 4.892 254 0.786
0.2 0.001 146 0.001 505 1.313 5.744 987 2.004 467 0.349
0.3 0.000 861 0.001 845 2.142 1.863 818 1.034 105 0.555
0.4 0.001 667 0.001 906 1.143 0.708 596 0.548 860 0.775
0.5 0.002 209 0.002 030 0.919 0.603 340 0.744 392 1.234

Gamma 0.1 0.001 304 0.001 431 1.097 31.206 356 43.310 057 1.388
0.2 0.000 818 0.000 498 0.609 4.687 777 2.877 317 0.614
0.3 0.000 809 0.000 509 0.629 4.073 068 2.623 079 0.644
0.4 0.000 790 0.000 504 0.639 3.101 856 2.255 516 0.727
0.5 0.001 006 0.000 421 0.419 4.345 946 1.778 993 0.409
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Table A2. Fairing performance for CO, number of sample paths = 105

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.000 625 0.000 499 0.799 1.198 545 2.165 792 1.807
0.2 0.001 281 0.001 031 0.804 1.528 602 0.540 757 0.354
0.3 0.012 215 0.014 139 1.158 1.558 366 1.243 107 0.798
0.4 0.011 412 0.007 892 0.692 0.720 879 0.573 542 0.796
0.5 0.002 801 0.006 546 2.337 0.074 107 0.279 549 3.772

Delta 0.1 0.000 367 0.000 238 0.648 2.593 194 4.000 983 1.543
0.2 0.000 433 0.000 394 0.910 0.590 155 0.978 936 1.659
0.3 0.000 717 0.001 187 1.655 0.819 275 0.701 442 0.856
0.4 0.000 566 0.000 686 1.212 0.242 859 0.256 121 1.055
0.5 0.000 423 0.000 821 1.941 0.118 531 0.320 519 2.704

Gamma 0.1 0.000 431 0.000 401 0.931 9.481 634 22.353 851 2.358
0.2 0.000 366 0.000 241 0.657 1.928 106 0.932 435 0.484
0.3 0.000 208 0.000 269 1.295 0.746 287 1.275 929 1.710
0.4 0.000 294 0.000 207 0.706 1.135 561 0.977 121 0.860
0.5 0.000 196 0.000 184 0.938 0.874 006 0.817 375 0.935

Table A3. Fairing performance for CO, number of sample paths = 106

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.000 275 0.000 184 0.669 0.121 964 0.431 934 3.541
0.2 0.000 511 0.000 918 1.797 0.685 632 1.197 275 1.746
0.3 0.001 030 0.001 618 1.571 0.103 982 0.108 245 1.041
0.4 0.001 802 0.001 087 0.603 0.050 889 0.062 015 1.219
0.5 0.005 781 0.007 900 1.366 0.189 364 0.273 682 1.445

Delta 0.1 0.000 097 0.000 103 1.058 0.249 694 0.639 947 2.563
0.2 0.000 138 0.000 244 1.773 0.507 179 0.939 763 1.853
0.3 0.000 103 0.000 226 2.197 0.068 867 0.189 072 2.745
0.4 0.000 250 0.000 211 0.846 0.070 394 0.073 581 1.045
0.5 0.000 187 0.000 415 2.220 0.069 341 0.189 217 2.729

Gamma 0.1 0.000 076 0.000 214 2.822 3.434 934 8.077 912 2.352
0.2 0.000 107 0.000 096 0.900 0.696 168 0.543 899 0.781
0.3 0.000 082 0.000 074 0.902 0.313 318 0.468 134 1.494
0.4 0.000 086 0.000 070 0.812 0.325 209 0.301 834 0.928
0.5 0.000 118 0.000 064 0.543 0.525 378 0.298 024 0.567



390 Kang et al.

Table A4. Fairing performance for DO, number of sample paths = 104

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.177 991 0.204 037 1.146 6.204 482 7.161 622 1.154
0.2 0.144 163 0.155 648 1.080 5.732 985 4.669 140 0.814
0.3 0.093 758 0.059 618 0.636 1.999 274 1.495 868 0.748
0.4 0.168 825 0.097 084 0.575 0.595 954 0.237 579 0.399
0.5 0.227 867 0.176 645 0.775 0.719 249 0.610 910 0.849

Delta 0.1 0.091 601 0.085 297 0.931 21.590 139 24.636 857 1.141
0.2 0.075 925 0.052 138 0.687 4.473 775 1.926 412 0.431
0.3 0.068 504 0.029 330 0.428 3.308 067 1.777 163 0.537
0.4 0.066 104 0.023 914 0.362 2.232 643 1.232 896 0.552
0.5 0.078 895 0.033 109 0.420 3.397 535 1.621 266 0.477

Gamma 0.1 0.184 289 0.070 915 0.385 136.011 529 59.310 041 0.436
0.2 0.197 668 0.026 891 0.136 83.801 240 6.686 550 0.080
0.3 0.133 909 0.022 409 0.167 248.176 466 27.313 975 0.110
0.4 0.196 291 0.012 310 0.063 667.814 406 16.996 175 0.025
0.5 0.145 305 0.010 608 0.073 23289.509 582 212.832 827 0.009

Table A5. Fairing performance for DO, number of sample paths = 105

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.048 711 0.031 598 0.649 2.839 865 4.757 498 1.675
0.2 0.051 435 0.045 635 0.887 0.359 608 0.874 123 2.431
0.3 0.066 943 0.099 913 1.493 0.747 506 0.992 980 1.328
0.4 0.058 959 0.037 956 0.644 0.268 482 0.174 729 0.651
0.5 0.041 649 0.029 571 0.710 0.135 095 0.074 141 0.549

Delta 0.1 0.038 277 0.026 569 0.694 8.542 883 13.584 750 1.590
0.2 0.032 428 0.025 313 0.781 1.414 315 1.802 560 1.275
0.3 0.014 477 0.017 056 1.178 0.594 527 0.573 660 0.965
0.4 0.026 170 0.016 340 0.624 1.020 187 0.747 576 0.733
0.5 0.015 758 0.006 374 0.404 0.692 426 0.244 048 0.352

Gamma 0.1 0.085 309 0.063 838 0.748 21.708 945 19.606 209 0.903
0.2 0.042 971 0.017 349 0.404 24.398 032 4.846 873 0.199
0.3 0.031 946 0.005 791 0.181 42.658 058 2.606 274 0.061
0.4 0.047 244 0.006 809 0.144 76.938 641 14.543 675 0.189
0.5 0.040 049 0.002 171 0.054 155.816 662 166.204 966 1.067
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Table A6. Fairing performance for DO, number of sample paths = 106

RMSE RMSRE (%)
Ratio Ratio

Volatility None Fairing Fairing/none None Fairing Fairing/none

Price 0.1 0.009 760 0.006 458 0.662 0.333 251 0.881 242 2.644
0.2 0.014 863 0.022 572 1.519 0.511 282 0.896 094 1.753
0.3 0.009 818 0.011 665 1.188 0.055 361 0.100 499 1.815
0.4 0.025 664 0.019 397 0.756 0.078 652 0.052 960 0.673
0.5 0.018 673 0.017 536 0.939 0.071 071 0.074 206 1.044

Delta 0.1 0.006 364 0.005 007 0.787 2.887 798 2.893 965 1.002
0.2 0.007 903 0.007 984 1.010 0.406 854 0.579 385 1.424
0.3 0.006 528 0.003 615 0.554 0.258 660 0.144 399 0.558
0.4 0.007 930 0.005 385 0.679 0.291 070 0.174 859 0.601
0.5 0.010 076 0.004 172 0.414 0.460 961 0.209 221 0.454

Gamma 0.1 0.010 948 0.012 300 1.123 10.685 524 9.064 668 0.848
0.2 0.014 575 0.005 231 0.359 9.889 703 1.933 308 0.195
0.3 0.012 971 0.003 025 0.233 14.849 271 3.415 856 0.230
0.4 0.018 651 0.002 106 0.113 52.548 515 5.453 844 0.104
0.5 0.013 359 0.002 584 0.193 661.434 011 150.584 595 0.228

Table A7. Fairing performance for ELS1, number of sample paths = 104

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.026 772 0.015 176 0.567 0.024 156 0.013 683 0.566
3M 0.043 370 0.035 100 0.809 0.040 728 0.032 964 0.809
5M 0.091 541 0.116 871 1.277 0.090 537 0.116 250 1.284
7M 0.060 849 0.087 711 1.441 0.063 189 0.092 160 1.458
9M 0.124 374 0.154 804 1.245 0.131 593 0.164 284 1.248

11M 0.106 448 0.111 599 1.048 0.113 904 0.120 635 1.059
Delta 1M 0.008 870 0.004 243 0.478 45.042 267 29.009 132 0.644

3M 0.013 627 0.007 820 0.574 11.125 575 2.836 769 0.255
5M 0.018 166 0.010 850 0.597 3.791 569 5.074 421 1.338
7M 0.026 126 0.009 932 0.380 6.885 227 3.272 720 0.475
9M 0.025 667 0.014 513 0.565 5.461 150 3.087 952 0.565

11M 0.027 759 0.011 158 0.402 6.378 829 2.920 302 0.458
Gamma 1M 0.013 089 0.001 605 0.123 170.944 067 61.484 846 0.360

3M 0.030 933 0.004 728 0.153 94.916 265 7.814 702 0.082
5M 0.036 285 0.002 407 0.066 83.672 159 8.892 477 0.106
7M 0.042 971 0.003 351 0.078 119.386 012 10.844 639 0.091
9M 0.043 630 0.004 873 0.112 142.049 137 19.154 051 0.135

11M 0.039 148 0.004 551 0.116 158.717 747 22.222 170 0.140
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Table A8. Fairing performance for ELS1, number of sample paths = 105

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.009 988 0.009 041 0.905 0.009 172 0.008 248 0.899
3M 0.015 732 0.012 036 0.765 0.015 271 0.011 556 0.757
5M 0.028 741 0.023 026 0.801 0.028 781 0.023 004 0.799
7M 0.023 301 0.018 377 0.789 0.023 292 0.018 151 0.779
9M 0.026 116 0.017 394 0.666 0.026 662 0.017 613 0.661

11M 0.034 854 0.028 540 0.819 0.036 485 0.029 925 0.820
Delta 1M 0.003 476 0.001 551 0.446 25.007 081 26.501 342 1.060

3M 0.005 888 0.003 144 0.534 3.023 069 2.804 295 0.928
5M 0.007 681 0.002 870 0.374 3.397 839 2.278 815 0.671
7M 0.007 702 0.001 995 0.259 2.768 374 1.624 420 0.587
9M 0.006 119 0.001 078 0.176 1.544 639 0.551 511 0.357

11M 0.006 672 0.001 437 0.215 1.788 126 0.802 062 0.449
Gamma 1M 0.006 361 0.001 189 0.187 77.965 766 68.387 683 0.877

3M 0.010 540 0.001 209 0.115 37.974 661 4.815 578 0.127
5M 0.011 789 0.000 906 0.077 35.792 781 3.783 252 0.106
7M 0.014 614 0.000 600 0.041 40.307 293 3.452 645 0.086
9M 0.010 928 0.000 322 0.029 37.409 181 1.460 261 0.039

11M 0.014 552 0.000 454 0.031 64.440 685 2.231 438 0.035

Table A9. Fairing performance for ELS1, number of sample paths = 106

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.002 658 0.003 407 1.282 0.002 420 0.003 102 1.282
3M 0.004 025 0.003 688 0.916 0.003 808 0.003 525 0.926
5M 0.004 892 0.005 633 1.151 0.004 695 0.005 434 1.157
7M 0.005 648 0.004 725 0.837 0.005 663 0.004 631 0.818
9M 0.003 963 0.004 648 1.173 0.004 114 0.004 826 1.173

11M 0.003 954 0.005 322 1.346 0.004 195 0.005 490 1.309
Delta 1M 0.000 981 0.000 581 0.593 29.978 766 27.903 137 0.931

3M 0.001 475 0.001 174 0.796 1.235 948 0.779 192 0.630
5M 0.001 713 0.000 904 0.528 0.832 191 0.692 663 0.832
7M 0.002 042 0.001 163 0.570 0.810 540 0.808 872 0.998
9M 0.002 009 0.000 596 0.297 0.684 755 0.275 490 0.402

11M 0.001 970 0.000 744 0.377 0.642 783 0.309 150 0.481
Gamma 1M 0.001 526 0.000 708 0.464 69.692 625 52.667 074 0.756

3M 0.003 849 0.000 497 0.129 11.540 481 4.395 740 0.381
5M 0.003 209 0.000 273 0.085 8.402 842 1.490 872 0.177
7M 0.003 910 0.000 388 0.099 11.863 576 1.949 523 0.164
9M 0.004 715 0.000 269 0.057 15.575 413 1.062 526 0.068

11M 0.004 420 0.000 167 0.038 17.578 385 0.780 319 0.044
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Table A10. Fairing performance for ELS2, number of sample paths = 104

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.033 084 0.026 732 0.808 0.029 835 0.024 098 0.808
3M 0.057 145 0.059 545 1.042 0.054 356 0.056 950 1.048
5M 0.130 751 0.140 888 1.078 0.131 126 0.141 777 1.081
7M 0.082 856 0.092 738 1.119 0.088 028 0.098 868 1.123
9M 0.131 875 0.150 059 1.138 0.141 872 0.162 125 1.143

11M 0.108 610 0.109 098 1.004 0.118 138 0.119 415 1.011
Delta 1 1M 0.008 793 0.006 660 0.757 59.427 882 42.770 070 0.720

3M 0.012 892 0.006 206 0.481 10.095 031 4.211 589 0.417
5M 0.017 210 0.006 946 0.404 6.033 619 2.280 254 0.378
7M 0.021 428 0.009 625 0.449 6.950 013 3.524 935 0.507
9M 0.022 969 0.011 262 0.490 6.221 762 3.063 781 0.492

11M 0.024 212 0.010 417 0.430 6.621 264 3.728 343 0.563
Delta 2 1M 0.005 573 0.002 251 0.404 453.964 648 409.756 625 0.903

3M 0.013 558 0.008 629 0.636 35.546 945 19.091 001 0.537
5M 0.013 138 0.010 743 0.818 16.355 078 10.186 645 0.623
7M 0.019 124 0.011 733 0.614 11.406 066 8.654 134 0.759
9M 0.012 211 0.006 995 0.573 8.956 580 6.393 383 0.714

11M 0.019 139 0.010 155 0.531 9.777 811 6.217 412 0.636
Gamma 11 1M 0.012 409 0.002 848 0.230 2042.119 060 338.539 397 0.166

3M 0.030 306 0.004 581 0.151 117.069 119 14.322 664 0.122
5M 0.033 010 0.001 925 0.058 111.551 933 6.343 803 0.057
7M 0.035 884 0.003 199 0.089 128.218 000 13.422 504 0.105
9M 0.040 377 0.003 873 0.096 156.904 086 15.582 539 0.099

11M 0.035 805 0.005 519 0.154 166.655 311 28.578 097 0.171
Gamma 22 1M 0.009 358 0.001 493 0.160 1070.117 668 478.007 650 0.447

3M 0.031 598 0.005 422 0.172 593.728 970 86.114 763 0.145
5M 0.025 977 0.003 748 0.144 149.792 054 29.734 086 0.199
7M 0.037 298 0.008 772 0.235 129.832 723 26.034 627 0.201
9M 0.032 570 0.003 434 0.105 145.192 843 14.843 527 0.102

11M 0.035 285 0.004 192 0.119 175.920 220 22.410 546 0.127
Gamma 12 1M 0.000 523 0.000 305 0.582 4046.771 682 1923.908 560 0.475

3M 0.002 116 0.000 535 0.253 5106.211 309 1395.730 774 0.273
5M 0.002 964 0.000 547 0.184 3091.679 720 515.772 550 0.167
7M 0.003 465 0.000 965 0.278 3302.801 124 389.754 606 0.118
9M 0.003 291 0.000 711 0.216 977.581 637 298.692 771 0.306

11M 0.003 568 0.001 188 0.333 1009.590 933 905.007 315 0.896
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Table A11. Fairing performance for ELS2, number of sample paths = 105

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.009 949 0.008 403 0.845 0.009 134 0.007 698 0.843
3M 0.016 027 0.013 773 0.859 0.015 579 0.013 329 0.856
5M 0.026 624 0.024 659 0.926 0.026 776 0.024 846 0.928
7M 0.019 818 0.018 349 0.926 0.020 201 0.018 702 0.926
9M 0.021 299 0.017 138 0.805 0.022 602 0.017 972 0.795

11M 0.029 558 0.026 948 0.912 0.032 072 0.029 229 0.911
Delta 1 1M 0.003 495 0.001 772 0.507 31.377 765 26.813 794 0.855

3M 0.005 577 0.003 095 0.555 3.070 638 2.154 082 0.702
5M 0.006 993 0.003 174 0.454 3.189 354 1.516 771 0.476
7M 0.006 380 0.002 032 0.319 2.445 714 1.044 479 0.427
9M 0.006 041 0.002 043 0.338 1.754 497 0.654 452 0.373

11M 0.005 968 0.002 216 0.371 1.724 396 0.803 891 0.466
Delta 2 1M 0.001 233 0.000 573 0.465 278.992 852 180.654 766 0.648

3M 0.002 786 0.001 759 0.631 14.675 797 9.898 480 0.674
5M 0.004 393 0.002 458 0.560 6.467 751 3.897 348 0.603
7M 0.004 874 0.003 427 0.703 3.801 238 2.649 542 0.697
9M 0.004 672 0.002 375 0.508 3.784 935 2.126 802 0.562

11M 0.004 564 0.002 850 0.624 3.612 032 2.288 814 0.634
Gamma 11 1M 0.006 239 0.001 082 0.173 547.459 024 214.146 369 0.391

3M 0.010 013 0.001 414 0.141 38.291 820 6.622 703 0.173
5M 0.011 197 0.001 236 0.110 43.173 254 5.720 355 0.132
7M 0.012 261 0.000 880 0.072 42.045 901 4.588 565 0.109
9M 0.010 620 0.000 696 0.066 42.605 912 3.431 557 0.081

11M 0.013 112 0.000 756 0.058 62.077 639 4.599 280 0.074
Gamma 22 1M 0.001 819 0.000 712 0.391 511.204 917 205.932 286 0.403

3M 0.006 808 0.001 286 0.189 315.426 466 111.532 618 0.354
5M 0.009 748 0.000 922 0.095 53.359 035 9.989 504 0.187
7M 0.011 297 0.001 035 0.092 46.575 628 8.202 007 0.176
9M 0.009 781 0.000 918 0.094 41.572 930 7.708 663 0.185

11M 0.010 467 0.000 896 0.086 51.193 592 7.626 556 0.149
Gamma 12 1M 0.000 176 0.000 142 0.810 2443.485 241 1800.273 969 0.737

3M 0.000 636 0.000 179 0.281 1326.216 089 520.126 928 0.392
5M 0.000 926 0.000 292 0.315 720.166 137 531.307 996 0.738
7M 0.001 036 0.000 290 0.280 956.262 255 250.915 086 0.262
9M 0.001 030 0.000 265 0.258 443.069 192 88.899 924 0.201

11M 0.001 071 0.000 325 0.304 693.343 928 198.121 479 0.286
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Table A12. Fairing performance for ELS2, number of sample paths = 106

RMSE RMSRE (%)
Ratio Ratio

Maturity None Fairing Fairing/none None Fairing Fairing/none

Price 1M 0.002 911 0.003 525 1.211 0.002 651 0.003 209 1.211
3M 0.006 726 0.005 754 0.856 0.006 346 0.005 449 0.859
5M 0.008 274 0.008 704 1.052 0.008 114 0.008 606 1.061
7M 0.006 961 0.007 053 1.013 0.007 018 0.007 093 1.011
9M 0.007 541 0.007 990 1.060 0.008 049 0.008 484 1.054

11M 0.009 645 0.010 000 1.037 0.010 537 0.010 814 1.026
Delta 1 1M 0.000 965 0.000 643 0.666 39.251 085 39.555 403 1.008

3M 0.001 274 0.001 021 0.802 1.158 340 0.702 197 0.606
5M 0.001 666 0.000 919 0.552 0.782 159 0.436 444 0.558
7M 0.001 833 0.001 115 0.608 0.758 948 0.445 795 0.587
9M 0.001 582 0.000 780 0.493 0.572 684 0.238 785 0.417

11M 0.001 854 0.001 047 0.565 0.567 359 0.301 094 0.531
Delta 2 1M 0.000 420 0.000 511 1.218 148.585 265 137.128 162 0.923

3M 0.001 024 0.000 776 0.757 5.628 705 4.719 485 0.838
5M 0.001 665 0.000 938 0.563 1.518 567 1.410 389 0.929
7M 0.001 657 0.001 002 0.605 1.104 430 0.640 570 0.580
9M 0.001 802 0.000 993 0.551 1.029 175 0.564 742 0.549

11M 0.001 682 0.000 816 0.485 0.893 341 0.561 947 0.629
Gamma 11 1M 0.001 493 0.000 712 0.477 216.048 600 205.834 303 0.953

3M 0.003 803 0.000 481 0.126 14.561 589 4.020 437 0.276
5M 0.003 293 0.000 354 0.108 10.747 362 1.881 142 0.175
7M 0.003 645 0.000 398 0.109 12.615 216 1.882 688 0.149
9M 0.003 767 0.000 306 0.081 14.507 076 1.416 406 0.098

11M 0.003 833 0.000 439 0.114 17.604 703 2.437 236 0.138
Gamma 22 1M 0.000 869 0.000 507 0.584 241.660 508 162.651 063 0.673

3M 0.002 140 0.000 316 0.148 95.880 964 80.676 162 0.841
5M 0.003 074 0.000 440 0.143 16.351 848 2.938 703 0.180
7M 0.005 245 0.000 396 0.076 15.688 571 1.922 473 0.123
9M 0.003 441 0.000 457 0.133 14.335 122 3.430 490 0.239

11M 0.003 329 0.000 303 0.091 15.133 258 2.420 689 0.160
Gamma 12 1M 0.000 106 0.000 099 0.934 1857.373 371 1626.926 020 0.876

3M 0.000 221 0.000 096 0.435 373.803 350 218.324 963 0.584
5M 0.000 305 0.000 112 0.369 262.351 788 200.695 015 0.765
7M 0.000 324 0.000 129 0.399 254.714 631 136.117 780 0.534
9M 0.000 369 0.000 114 0.308 125.985 431 28.771 846 0.228

11M 0.000 380 0.000 118 0.310 164.644 789 48.020 995 0.292

Appendix B: Proofs

Proof of Lemma 1. For notational convenience, we denote
Ãi+1 − 2Ãi + Ãi−1, Zi+1 − 2Zi + Zi−1 by F + G̃ and F ,
respectively. We define G in a similar way so that Ai+1 −
2Ai + Ai−1 = F + G. Then, in a straightforward manner,
we get

E[(Ãi+1 − 2Ãi + Ãi−1)2 − (Ai+1 − 2Ai + Ai−1)2]
= E[(F + G̃)2 − (F + G)2]
= E[2(F + G)(G̃ − G) + (G̃ − G)2].

On the other hand, for any real numbers a and
b, we have |g(a + b) − g(b)| ≤ |a| ∧ (δσ ). This leads
us to |G̃ − G| ≤ ζi . Also, from |g(a)| ≤ δσ , |G| ≤
4δσ . Since E[|F |] = E[|Zi+1 − 2Zi + Zi−1|] = √

6σ E[|Z|]

for a standard normal random variable Z, we
get

E[(Ãi+1 − 2Ãi + Ãi−1)2 − (Ai+1 − 2Ai + Ai−1)2]

≤ E
[
(2

√
6σ |Z| + 8δσ )ζi + ζ 2

i

]
.

As for E[(�i,1 − �i )2] when i = 1, 2, n − 2, n − 1, we note
that:

E[(�i,1 − �i )2] = 1
h4

E[(F + G̃)2] ≤ 1
h4

E[(|F | + |G̃|)2]

≤ 1
h4

E[(
√

6σ |Z| + 4δσ )2].

Combining above two observations and E[|Z|] = √
2/π

gives the result. �
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Proof of Proposition 1. Let us fix i and compute E[A2
i ],

E[Ai+1 Ai−1], and E[Ai Ai−1] separately. For the first one,
we proceed as follows:

E
[
A2

i

] = E[(Zi + g(τϕ × Zi ))
2]

= E
[
Z2

i + 2Zi g(τϕ × Zi ) + g(τϕ × Zi )2]
= σ 2 + 2σE [Xg(τ |ϕ|σY)] + E[g(τ |ϕ|σY)2]

where X = σ−1 Zi and Y = (σ |ϕ|)−1ϕ × Zi . Then, it is easy
to see that X, Y are two standard normal random vari-
ables with the correlation ρ1 = −1/|ϕ|. Since we can write

ρ1Y +
√

1 − ρ2
1 Z in place of X for an independent standard

normal Z, we are led to

E[A2
i ] = σ 2 + 2σρ1 E [Yg(τ |ϕ|σY)] + E

[
g(τ |ϕ|σY)2] .

The second one can be computed in a similar fashion,

E[Ai+1 Ai−1]
= E [(Zi+1 + g(τϕ × Zi+1)) (Zi−1 + g(τϕ × Zi−1))]
= E[Zi+1g(τϕ · Zi−1) + Zi−1g(τϕ × Zi+1)

+ g(τϕ × Zi+1)g(τϕ × Zi−1)]
= E

[
2σ Xg(τ |ϕ|σY) + g(τ |ϕ|σY)g(τ |ϕ|σY′)

]
,

where X, Y, and Y′ are standard normal random variables
with correlations ρ2 = Corr(X, Y) = −1/(6|ϕ|) and ρ3 =
Corr(Y, Y′) = 7/(9|ϕ|2). Again, using ρ2Y +

√
1 − ρ2

2 Z in-
stead of X, we get:

E[Ai+1 Ai−1] = 2σρ2 E [Yg(τ |ϕ|σY)]
+E

[
g(τ |ϕ|σY)g(τ |ϕ|σY′)

]
.

Likewise, we obtain:

E[Ai Ai−1]
= E [(Zi + g(τϕ × Zi )) (Zi−1 + g(τϕ × Zi−1))]
= E[Zi g(τϕ × Zi−1) + Zi−1g(τϕ × Zi )

+ g(τϕ × Zi )g(τϕ × Zi−1)]
= E

[
2σ Xg(τ |ϕ|σY) + g(τ |ϕ|σY)g(τ |ϕ|σY′′)

]
= 2σρ4 E [Yg(τ |ϕ|σY)] + E

[
g(τ |ϕ|σY)g(τ |ϕ|σY′′)

]
,

where X, Y, and Y′′ are correlated standard normals
with ρ4 = Corr(X, Y) = 2/(3|ϕ|) and ρ5 = Corr(Y, Y′′) =
−14/(9|ϕ|2).

Combining all of three computations, we arrive at

E[(Ai+1 − 2Ai + Ai−1)2]

= 6σ 2 − 70σ

3|ϕ| E [Yg(τ |ϕ|σY)] + 6E
[
g(τ |ϕ|σY)2]

+ 2E
[
g(τ |ϕ|σY)g(τ |ϕ|σY′)

]
− 8E

[
g(τ |ϕ|σY)g(τ |ϕ|σY′′)

]
.

The next step is to represent each of these terms in their
simplest forms so that numerical implementation becomes
straightforward. First of all,

E [Yg(τ |ϕ|σY)]

= E
[
δσY; Y >

δ

τ |ϕ|
]

− E
[
δσY; Y < − δ

τ |ϕ|
]

+E
[
τ |ϕ|σY2; |Y| ≤ δ

τ |ϕ|
]

= 2δσ E
[

Y; Y >
δ

τ |ϕ|
]

+ τ |ϕ|σ E
[

Y2; |Y| ≤ δ

τ |ϕ|
]

.

where we used the symmetric property of Y. For no-
tational convenience, we write x for δ/(τ |ϕ|). Then,
secondly,

E[g(τ |ϕ|σY)2] = (δσ )2 P (|Y| > x)
+(τ |ϕ|σ )2 E[Y2; |Y| ≤ x].

For the third term, we have:

E
[
g(τ |ϕ|σY)g(τ |ϕ|σY′)

]
= 2(δσ )2 P(Y > x, Y′ > x) − 2(δσ )2 P(Y > x, Y′ < −x)

+4τ |ϕ|δσ 2 E
[
Y; |Y| ≤ x, Y′ > x

]
+(τ |ϕ|σ )2 E

[
YY′; |Y| ≤ x, |Y′| ≤ x

]
.

Similar computations are made for the last term. We sum

them up and divide it by 6σ 2, obtaining the formula in the
statement. �
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