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SUMMARY

Cartesian grid with cut-cell method has drawn attention of CFD researchers owing to its simplicity.
However, it suffers from the accuracy near the boundary of objects especially when applied to viscous
flow analysis. Hybrid grid consisting of Cartesian grid in the background, body-fitted layer near the object,
and transition layer connecting the two is an interesting alternative. In this paper, we propose a robust
method to generate hybrid grid in two-dimensional (2D) and three-dimensional (3D) space for viscous flow
analysis. In the first step, body-fitted layer made of quadrangles (in 2D) or prisms (in 3D) is created near
the object’s boundary by extruding front nodes with a speed function depending on the minimum normal
curvature obtained by quadric surface fitting. To solve global interferences effectively, a level set method is
used to find candidates of colliding cells. Then, axis-aligned Cartesian grid (quadtree in 2D or octree in 3D)
is filled in the rest of the domain. Finally, the gap between body-fitted layer and Cartesian grid is connected
by transition layer composed of triangles (in 2D) or tetrahedrons (in 3D). Mesh in transition layer is initially
generated by constrained Delaunay triangulation from sampled points based on size function and is further
optimized to provide smooth connection. Our approach to automatic hybrid grid generation has been tested
with many models including complex geometry and multi-body cases, showing robust results in reasonable
time. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Grid generation is a troublesome area in numerical analysis. This is particularly true of the field of
CFD where automatic creation of high quality mesh in a robust fashion still remains a difficult and
time-consuming step. The quality and density of the grid used in CFD directly affects the accuracy
of the numerical solution. However, an unnecessarily fine grid slows down computation and the
arrival at a solution [1].

Grid types in CFD analysis can be grouped in two categories: structured grid and unstructured
grid. The pros and cons of each type are well discussed in the literatures such as Baker [2]. It is
believed that a structured grid created in body-fitted fashion is superior for capturing viscous flow
near the objects’ surface because of the orthogonality of elements to the dominant flow direction [3].
However, a structured grid makes unnecessarily dense elements in areas far from focal objects to
achieve the resolution required in the critical part of the domain. Moreover, it is not a simple task to
automatically create a body-fitted structured mesh for objects with complex geometry. For this rea-
son, a hybrid mesh consisting of a body-fitted structured mesh layer and an unstructured background
mesh has gained the attention of CFD researchers for viscous flow analysis in recent years [3–13]
including its use in several commercially available software programs such as VisCART, Harpoon,
and GDT. Chand [4] proposed a structured–unstructured hybrid mesh for overlapping multi-body
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objects. In [5–7], Wang and his colleagues reported their work on solving the moving body problem
using a hybrid grid with quadrangle/triangle/Cartesian elements, as is the target of this paper. Their
work proposed an efficient time-integration algorithm for a moving object (unsteady) flow problem
discretized with a hybrid grid and showed the advantages of using a hybrid grid. However, their work
focuses on efficient numerical solutions, and the hybrid grid generation method is only briefly intro-
duced Also, thinner portions of the viscous layer are generated at the concave regions to avoid local
interferences of the propagating nodes Dawes et al. [8, 9] also introduced a hybrid mesh with a
viscous layer based on Cartesian cells as background mesh. They projected the nodes on the
Cartesian cells to the viscous layer and inserted unstructured cells where these two layers met to
connect them, To do this work without skewed unstructured cells, the surface mesh should have a
uniform size similar to Cartesian cells. Table I shows the comparison of several existing methods
used to generate grids for viscous flow analysis using mixed types of cells.

In this paper, we will focus on the robust generation of a hybrid mesh with high quality based
on adaptive Cartesian grid in detail, which can handle two-dimensional (2D) and two-dimensional
(3D) objects in the same fashion. As shown in Figure 1, we automatically generate a hybrid grid
consisting of the following three layers : a body-fitted layer (quadrangles in 2D and prisms in 3D),
a transition layer (triangles in 2D and tetrahedrons in 3D), and a Cartesian layer (quadtree in 2D
and octree in 3D). We aim to develop a method that can ensure more than a certain thickness of
viscous layer on the whole input surface regardless of convexity and smooth transition between two
structured layers.

Our mesh has smaller number of cells than the approaches using body-fitted cells and tetrahe-
drons [4, 6, 10] because of an adaptive Cartesian mesh. Unlike several other approaches such as
[5], which stop stacking body-fitted cells and fill with unstructured cells in that region, the body-
fitted layer avoids local interferences and global interferences in a systematic way by using level set
approach without losing parametric information of the surface boundary. In a transition layer, our
approach allows arbitrarily sampled points in a space, and this means we can generate tetrahedral
cells denser, where we want, regardless of surface mesh quality, unlike a general advancing front
method. Even though an initial triangulation result has many skinny cells, the optimization step
improves the quality and gives good result experimentally.

Table II summarizes the mesh element types and methods used for each layer, each of which
will be explained in the subsequent sections. Section 2 will overview the overall procedure to cre-
ate a hybrid grid, followed by detailed methods for the body-fitted layer, the Cartesian layer, and
the transition layer in Sections 3, 4, and 5, respectively. Section 6 includes resulting meshes and
computation time, and the conclusion is in Section 7.

2. OVERALL PROCEDURE

As mentioned earlier, one of the advantages of our approach is that it can be applied to 2D and 3D
within the same framework. Although the remainder of this study will deal primarily with 3D cases,
it can be applied to 2D cases in the same way with the exception of the curvature estimation section,
which will be explained in Section 3.

Table I. Hybrid approaches for viscous grid generation.

Group Major cell type Approach Dimension

Zhang et al. [5] Quad/Tri/Cartesian Advancing front method 2D
Wang et al. [6] Hexa/Tetra Advancing front method 3D
Khawaja et al. [10, 11] Prism/Tetra Automatic receding 3D

C advancing front method
Dawes et al. [8, 9] Hexa/Cartesian Level set method 3D
Gloth et al. [12] Quad/Tri/Cartesian Level set method 2D
Pattinson et al. [13] Cartesian Cut-cell, dual-mesh 2D
Ebeida et al. [3] Quad/Tri Spatial decomposition 2D
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(a) Hybrid mesh of the 2D NACA0012 model; the darkest region is the body-fitted layer, the brightest region is 
the Cartesian layer and the middle layer is the transition layer

(b) Hybrid mesh of a 3D fightter airplane model

Figure 1. Hybrid grids.

Table II. Element types and generation methods for each layer.

Body-fitted layer Transition layer Cartesian layer

Data 2D Quadrangles Triangles Quadtree
Structure 3D Prisms Tetrahedrons Octree

Method Level set Size function based optimization Scan conversion

We assume that the input object is given as a piecewise linear representation, such as the point
sequence curves in 2D and triangular meshes in 3D. Let B = {�1 . . . ,�t } denote the input object’s
boundary, and the spatial region of concern where we need to generate cells may be either the inside
or the outside of the objects. Let S = [xmin, xmax] � [ymin, ymax] � [´min, ´max] denote the spatial
area of interest within which mesh is to be made. C = <BC, TC, CC> where BC represents the set
of cells in the body-fitted layer, CC is the set of Cartesian cells, and finally TC denotes the set of
cells in the transition layer.

Figure 2 shows the overall procedure for generating hybrid mesh. The three primary sequential
steps to generating the mesh for viscous flow analysis are as follows :

� [Body-fitted layer generation] The first step is to generate the body-fitted structured layer
directly touching the surface of the object. This layer is composed of quad-cells in 2D and
prisms in 3D. This layer is stacked outward from the objects’ surface boundary, until the
pre-defined conditions are satisfied. We adopted the level set approach for this step.
� [Cartesian layer generation] The next step is to create an adaptive Cartesian layer generated

by using a quadtree/octree structure. This is a trivial task with a certain amount of offset model
from the input geometries.
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Figure 2. Overall procedure.

Figure 3. Grid generation with a concave curve.

� [Transition layer generation] The final step is to smoothly fill in the area between the two
differently oriented structured layers with unstructured grids. To maintain the faces already
created by the two structured meshes, we need to solve a constrained problem. Also, in order to
build up the mesh as regularly shaped as possible, we apply an optimization step to the initial
construction.

Again, Figure 1(a) shows these three kinds of layers for the NACA0012 model in 2D and
Figure 1(b) shows the 3D result of a fighter airplane model.

3. BODY-FITTED LAYER GENERATION

In this paper, the target body-fitted layer mesh should satisfy the following properties as with other
previous studies:

� The interlayer spacing is dense enough near the surface boundary to satisfy the required
accuracy for the viscous fluid, and farther from the surface, the interval is wider.
� Fronting nodes propagate along the normal vector directions of a current layer.
� Each layer avoids local interferences at concave regions.
� Each layer avoids global interferences between multiple separated objects.

To satisfy the third condition, our solution is to make the propagation amount at each node accord-
ing to its curvature value. Figure 3 shows the conceptual way to avoid local interferences with a 2D
concave curve.

Those properties can be satisfied systematically by applying the level set method with curvature
correction term. The level set [14, 15] is the mathematical model, which describes the behavior of
fronting boundaries varied by time. The concept of level set is simple and there are many appli-
cations in CFD [34]. Given an interface �.t/ in Rn (n=2, 3) bounding an open region �.t/ and
moving along time t , let an implicit function ˆ.p, t / have the signed distance from p to �.t/, and
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the plus sign is chosen if p is outside �.t/. With a speed function F , which gives the speed of �.t/
in its normal direction, the evolution of the interface is defined by the level set equation shown in
Equation (1).

ˆt CF jrˆj D 0 (1)

In our case, the initial interface �(0) is given as B. The term F governs the actual behavior of
the evolving boundary [17]. This may be different in application, and in our case, we adopted F as
Equation (2).

F.p, t /D f .t/ � .FACFG.p// (2)

where FA is the advection term causing the interface to uniformly expand, usually set as 1, and
f .t/ D f0 � a

t , where f0 and a are user-defined constants, and the at term accelerates the prop-
agation velocity by time to satisfy the first property. When L is the longest axial length of the
axis-aligned bounding box of the input object, we set f0 D 10�5L and a= 1.2 as default values in
subsequent examples.
FG is a geometric term depending on the geometric property of the propagating fronts, and here,

we set FG.p/ D ���.p/ where �.p/ is the minimum normal curvature at p to make the fronting
nodes in the concave region faster and the nodes in convex region slower. � is the user-defined
parameter, and we used 0.1 as a default value. FG term makes the layer avoid local interferences,
and makes curvature values at the same isocurve/isosurface similar to each other, farther from the
boundary of the input model as shown in Figure 4.

3.1. Numerical implementation

The level set method is generally implemented by extracting isosurfaces from a scalar field eval-
uated along time evolution on a finite grid rather than extruding boundary nodes directly. Even
though the level set method has nice properties, there are two kinds of practical shortcomings to
apply to the viscous layer. First, it is very hard to use parametric information of boundary surfaces,
which is critical in general to numerical solvers because we do not use boundary nodes directly.
The other significant problem is time and memory efficiency. Because we generated extremely thin
layer near the body wall as mentioned above, we need too many finite grid cells or too much iterative
computations with manageable number of cells.

In this paper, we adopt the following strategy. We generate a body-fitted layer by moving forward
front nodes along their normal directions directly following Equation (3). This is the first-order
approximation of PpD F.p, t / � rˆ.p, t /

p0 D pC�t �F.p, t / � rˆ.p, t / (3)

Even though local interferences do not appear by F term and small enough value of �t , we cannot
avoid global interferences as shown in Figure 5. We adopt a hybrid mesh in this system, find the

Figure 4. Grid generation using level set; input object(left), isosurface extraction(middle), grid generation
by linking fronting nodes(right).
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Figure 5. Global interferences (a sectional view of a submerged inlet).

(a) Interference removal using a level set 

(b) Hybrid mesh generation

Figure 6. Hybrid mesh generation using level set.

intersecting cells and remove after marching one layer. The blank space is filled with unstructured
cells at the transition layer generation step as shown in Figure 6. The most naïve method is to check
all the paired combinations of cells, which takes too much time especially in 3D. To find the cells
colliding by global interferences efficiently, we apply the real level set implementation, and early
exclude non-intersecting cells.

Here, we do not need very small cells or an infinitesimal time step to satisfy the accuracy for
viscous flow, but only need moderate size of finite difference grid, and we use one-step or two-step
bigger size than the minimum cells of the quadtree/octree used for Cartesian cell generation in the
following step. Where the interface collides, there is discontinuity in gradient, rˆ, and then numer-
ically r2ˆ ! �1 near that region. This is called local Laplacian, and Xia et al. [18] suggest to
find the cells with r2ˆ < �ı.ı > 0/ where ı D jmin¹r2ˆºj=10. We apply this approach to find
candidate region of collision using a quadtree/octree as a finite difference grid numerically.

The total procedure for body-fitted layer generation is shown in Figure 7. Let n be the number
of body fitted layers to generate and T={t1, . . . , tn} = {1, . . . ,n} the set of generation time of each
layer. From t=0, time t is updated as �t.<1) at every iteration. At each iteration, we calculate
speed at each node on �.t/ using Equation (2), then calculate a Euclidean distance field as ˆ for
the narrow band [19] of �.t/ for computational efficiency. Update ˆ and find finite difference cells
where r2ˆ < �ı and mark edges(2D)/faces(3D) on �.t C�t/ passing these cells. An additional
body-fitted layer is only generated when t D ti , and intersection test is conducted for the cells from
marked edges/faces after generating a layer. Whole steps are conducted iteratively until n layers
are generated

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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Figure 7. The overall procedure; steps in a green box are repeated until the time t reaches the predefined
time step ti .i D 1,..n).

Figure 8. Quadric surface fitting (3D case).

3.2. Curvature estimation of surfaces in 3D

When we compute mesh structure using a level set, it can be more valuable to obtain the trends
of large and small relationships rather than the exact curvature values. In our work, we calculated
curvature by quadric surface fitting in order to obtain the values robustly, and the quadric surface
model is simplified for computational efficiency [20]. As shown in Figure 8, we assume the local
coordinate whose origin is the vertex p and the ´-axis is the direction of the normal vector of p.
Further, the tangent plane of the quadric surface at the p becomes local xy-plane.

The equation of the quadric surface at the local coordinate is represented as Equation (4). Note
that there are no x, y and constant terms because the tangent plane of the surface equals xy-plane at
the origin.

´D f .x,y/D
�
x y

� � a c

c b

� �
x

y

�
D ax2C by2C 2cxy (4)

We fit a quadric surface, represented as Equation (4), at each vertex p in B with its two-ring neigh-
bor points by weighted least squares method whose weights are the inverse function of the distance
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Figure 9. Minimum curvature calculation; an input geometry of a lamp (left) and its rendering colored by
minimum curvature values (right).

between p and its neighbor vertex. After fitting a local surface, we can easily calculate the curvature
at p. With a continuous parametric surface, the normal curvature is defined as Equation (5) [21].

� D �.dx, dy/D
Ldx2C 2Mdxdy CNdy2

Edx2C 2F dxdy CGdy2
(5)

In our case, the constants E, F , G, L, N , and M are calculated as Equation (6) from surface
formula (Equation (4)).

Ej.x.y/D.0,0/ D Px � Px D .xiC .2axC 2cy/k/ � .xiC .2axC 2cy/k/D 1

F j.x.y/D.0,0/ D Px � Py D .xiC .2axC 2cy/k/ � .yjC .2by C 2cx/k/D 0

Gj.x.y/D.0,0/ D Py � Py D .yjC .2by C 2cx/k/ � .yjC .2by C 2cx/k/D 1

Lj.x.y/D.0,0/ D n � Pxx D .k/ � .2ak/D 2a

M j.x.y/D.0,0/ D n � Pxy D .k/ � .2ck/D 2c

N j.x.y/D.0,0/ D n � Pyy D .k/ � .2bk/D 2b

(6)

where PD xiCyjC´k D xiCyjCf .x,y/k. By substituting Equation (6) for Equation (5), the
curvature becomes Equation (7), which is a function of dx and dy terms. We can directly compute
the maximum or minimum curvature value from the equation. After dividing numerator and denom-
inator by dx2, Equation (7) becomes the function of t D dy=dx term, which means the direction at
the tangent plane to calculate curvature. Then, we can find the minimum and maximum curvatures
by differentiating �.t/, and we use the minimum curvature to calculate FG in Equation (2).

� D �.t/D
2aC 4ct C 2bt2

1C t2
(7)

Figure 9 shows a lamp model colored by the minimum curvature at each vertex.

3.3. Density control for quality improvement

One effect that appeared when using level set approach is that the node points propagating at the
concave region get closer as layers are stacked up as shown in Figure 10. This generates very thin
cells, and they can affect the efficiency or convergence of the solver. On the other hand, the nodes
at the convex region get farther from each other. This kind of effect can degrade the accuracy of
the solution. This problem has been handled in the aspect of quality improvements [22–24]. Espe-
cially, Chalasani et al. [24] proposed a way to refine faces at convex regions and to collapse edges

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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(a) Before merging

(b) After merging nodes 

Input polygon

Figure 10. Density control result at concave region.

based on aspect ratios; however, in our case, we only deal with vertex split and merge rather than
edge or face split because it is more efficient to maintain mapping information between vertices
for many solvers. To cover these cases, we simply merge the nodes whose distances are within a
user-defined threshold, and split a node at the low density region in a layer. Figure 10 shows the
difference between the result of density control before and after.

At the specific feature with special properties such as the end of the aircraft’s wing, where the
flow converges, it is hard to get a good solution in the manner of simply splitting a node. In this
case, we insert multiple pseudo-edges and expand the centric node, the red point in Figure 11,
to the middle direction of the normal vectors of the two actual neighbor nodes. Users can select
this special node and define the expand direction before mesh generation. In Figure 11, we insert
two pseudo-edges at the sharp corner (red point) of the NACA0012 model, and expand the centric
node to the average direction of normal vectors of the two neighbors, and propagate two end nodes
(yellow points) in the pseudo-edges to the normal vectors of the fronting nodes in the same
direction. This scheme is applied iteratively to the central node until the propagation of the body-
fitted layer ends. The following Figure 11(b) shows a result mesh with a trailing edge of the
NACA0012 model.

We apply the similar approach for 3D cases. There exist similar multi-normal split approaches for
grid generation [25, 26] and for surface offset problem [27]. Our method is a simplified version of
Kim’s work [27] and only applied to convex areas. At a sharp convex edge where its dihedral angle
is less than the user-defined threshold, we split the edge normal to three vectors; two of them are
neighbor-face normal vectors, and the other is an average of them as the default value. At each node,
all the connected edges are checked one by one whether it is sharp or not, and if true, then the vertex
normal is additionally split to the three sharp edge normal vectors. Note that the original vertex
normal vector remains as it is. Figure 12(a) shows the conceptual way in 3D case, and Figure 12(b)
shows an example with a simple box model.

4. ADAPTIVE CARTESIAN LAYER GENERATION

To make a Cartesian mesh a certain distance away from the surface of the object, first we offset B as
much as dand obtain B�. This is simply obtained by extruding nodes using Equation (6) from the
last layer of the previous step as much as the remaining distance, Here, we do not need to consider

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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(a) 2D case; red edges means pseudo-edges

(b) Trailing edge handling with the NACA0012 model

Figure 11. Multi-spilt nodes in a 2D case.

(a) 3D case; a vertex is split only when it is connected to a sharp edge

(b) 3D case; a box input, two different views of one layer and 5 layers generation (from left to right) 

Figure 12. Multi-split examples in a 3D vase.

local and global interferences because the purpose of this step is to obtain cells outside B� and our
approach only collect the outside cells of the outermost boundary of B� regardless of its topology
or inner intersections.

We made Cartesian cells using a quadtree structure in 2D and an octree structure in 3D. This
is a trivial task even though there are several issues with generation such as a top-down approach
or bottom-up construction. We applied the scan conversion method shown in Figure 13 to make a
quadtree or an octree through a bottom-up method. A 2D case is made up by the line scan conversion
[28], and a 3D case can be done by a polygon scan conversion algorithm [29].

Figure 14 shows the 2D and 3D adaptive Cartesian cells obtained from a quadtree with the
NACA0012 model. Only the gray-shaded cells are used for analysis. These cells are collected by a
simple flood fill algorithm propagating from any seed cell outside B�

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
DOI: 10.1002/fld



HYBRID GRID GENERATION FOR VISCOUS FLOW ANALYSIS 901

(a) 2D line scan conversion (b) 3D polygonal scan conversion

Figure 13. Scan conversion in 2D (left and middle) and in 3D (right).

(a) A quadtree of a NACA0012 model in 2D (b) Sectional planes of the octree in 3D 

Figure 14. Cartesian layer.

Figure 15. Transition layer.

5. TRANSITION LAYER GENERATION

In order to connect two types of grids with different orientations, we use a relatively easy-to-
generate unstructured mesh like Zhang et al. [5]. However, in the case of the traditional advancing
front method used in [5], it is hard to control the density of the points. We used the size function
based mesh generation approach [30] especially introduced by Person et al. [31, 32] to get over
this problem. This is very simple and produces good quality. Also, it can be applied to 2D and 3D
case equally.

Our approach to generate cells in the transition layer is divided into two steps. First, we generate
the scalar field whose value represents a cell size in the transition layer, and initial points are sam-
pled based on this size function. All the nodes move forward until they meet the Cartesian layer.
Then, we get an initial triangulation by constrained Delaunay triangulation with sampled points, and
finally, we optimize the triangular mesh from the initial result. This step is repeated iteratively until
the nodes become stable. Figure 15 shows geometric features in the transition layer in our problem.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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5.1. Size function and initial point sampling

Before making triangular cells, first, we need points sampling in the transition layer. To sample
points, we calculate a scalar field in the transition layer by linearly combining the length of the
nearest edge from the generation point and the minimum cell size of the Cartesian layer. Euclidean
distances from two layers are used as weight of linear combination. Figure 16 shows the size func-
tion distribution by colored map display. Where the function value is low, we need dense points
and vice versa. Basically we sample points by iteratively marching nodes on the most exterior
curve/surface of the body-fitted layer along their normal directions as much as the size values rather
than the speed function until all the nodes reach the Cartesian cells. Figure 17 shows the sampling
result in the transition layer of the NACA0012 model.

5.2. Triangular/Tetra mesh generation

When we make triangular cells from the point samples, we need to maintain the faces already made
from two structured layers in the process of creating the most regularized combination. This kind
of problem is known as constrained Delaunay triangulation (CDT), where Delaunay triangulation
means the triangulation method to maximize the minimum angle of all the angles of the triangles
in the triangulation. The constraints of our problem are the boundary segments(2D)/faces(3D) from
the Cartesian layer and the holes are the inside region of the input solids as explained in Figure 15.
Figure 18 shows the CDT result of Figure 17

For 2D CDT and 3D DT problems, there are several open libraries such as CGAL [33]. How-
ever in a 3D case, constrained DT still remains a problem difficult to solve. In our case, similar to
Cavalcanti et al. [34], we flip faces and edges according to the constraints after a general Delaunay
triangulation.

Even though Delaunay triangulation guarantees regularized triangles from given points, the qual-
ity is affected by initial point sampling. Figure 18 shows the initial CDT from the sampled points.
Person et al. suggest modifying this result by moving points to the equilibrium positions. For each

Figure 16. Size function display of the transition layer.

Figure 17. Point sampling in the transition layer.

Figure 18. Initial constrained Delaunay triangulation.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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Figure 19. Inner forces.

Figure 20. Initial triangular mesh (left) and optimization (right).

interior node pi and its one ring neighbor nodes ¹pj º, we want to find node positions satisfying,
X

j
Fij D 0 (8)

Fij is the repulsive force to the node pi from pj as shown in Figure 19.

jFij j D
²
k.li0 � lij / if lij < li0

0 if lij > li0 (9)

where li0 means the initial size value of the pi . The goal is to find point positions, which make
the total net force zero.

dpi
dt
D F.pi /, t > 0 (10)

If a stationary solution is found, it satisfies the system F.p/ D 0. Same as the work of Persson
et al. [31], we approximate Equation (1) using the forward Euler method pnC1i D pni C�tF.p

n
i /

Figure 20 shows the result of the optimization.

6. EXAMPLES

We have tested our algorithm with several 2D and 3D models. All 2D models are piecewise liner
curves and 3D models are polygonal surfaces (triangular net or quadrangular net) as input.

Figure 21 shows the resulting hybrid mesh of NACA0012 model (left) and its closed-up view
(right). In Figure 22, the propagation of body fitted mesh near the concave region in the blue

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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Figure 21. NACA0012 model (2D); (left) total grid; and (right) expanded view of the front region.

Figure 22. Propagation in concave region.

Figure 23. Two spheres; multi-body case.

Figure 24. Sphere example; the right figure shows the details in the yellow rectangle in the left one.

rectangle of the upper one can be found. Note that the contour of the body-fitted layer gets smoother
in both cases as the mesh piled up due to the different propagation speed determined by the curvature
of the contour.
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Figure 25. The dinosaur example with x-axis sectional planes.

(a) (b)

(c)

(d)

(b)

(d)

(c)

Figure 26. The dinosaur example with different sectional planes.

A multi-body case is shown in Figure 23. A hybrid mesh that fills the space surrounding two
spherical bodies is generated. The right figure shows the close-up view of the in-between region.

A 3D grid was generated from the sphere model in Figure 24. Body fitted-hexahedrons are
layered from the solid body, and tetrahedron cells fill the space in between the body-fitted and
Cartesian hexahedron grids.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
DOI: 10.1002/fld



906 S. PARK ET AL.

(a) Mesh generation result; green cells are intersecting cells with a zx - plane and blue cells are intersecting cells  
with xy-axis plane and green 

(b) (c)

(d) 

(b)

(c)

(d)

(d)

Figure 27. Fighter aircraft example.

In order to see how it works on a more complex model, a 3D dinosaur model, composed of 90,642
surface meshes, was tested in Figures 25 and 26. Figure 26(c) shows that the resulting hybrid grid
from the gradual region is quite similar to the result of a simple spherical model shown in Figure 24.
For more complicated regions, it still generates proper body-fitted layers and evenly distributed
transition grids (Figure 26(c) and (d)).

Figure 27 shows the mesh generation result of a fighter airplane model. The intersecting grid cells
with axis parallel planes at the certain positions are displayed. There is no local interference, and
the body fitted layer is transformed to the Cartesian layer along tetrahedral cells.

We have tested the mentioned objects using a desktop PC with an Intel Core i5 CPU (2.66 GHz),
4 GB RAM, and the program developed with Microsoft Visual C++ (ver. 10.0 in Visual Studio
2010). Following two tables show the detailed experimental results from the three 3D models; com-
putation time analysis is represented in Table III, and Table IV shows quality analysis with several
quantitative geometric measures for tetrahedral cells.
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Table III. Computation time/memory table.

Sphere Dinosaur Fighter aircraft

# of faces in B 14,000 90,642 303,160
Input Size of S 10 times of object bounding box

Initial offset length 10�5

Extension ratio 1.2

# of total cells 1,413,150 3,746,254 11,139,264
Output # of prism cells 150,000 1,359,360 4,547,400

# of octree cells 173,288 233,936 156,084
# of tetrahedron cells 1,089,862 2,152,958 6,435,780

Body-fitted layer 39.771 387.818 1647.893
Computation Octree 3.182 7.752 6.334
time (s) Transition layer 415.710 663.022 1730.645

-Optimization 225.294 399.475 876.915

Total time 458.663 1058.592 3384.872

Table IV. Geometric quality of a grid.

Input Sphere Dinosaur Fighter aircraft

Minimum dihedral angle (ı) 2.00 3.00 1.15
Average dihedral angle (ı) 69.41 69.47 69.95

Tetrahedron % < 15. dihedral angle 0.712 % 0.737 % 0.973 %
cells Maximum area ratio 1.99 1.99 2.00

Average area ratio 1.22 1.18 1.36
% > 1.5 area ratio less than 0.001 % less than 0.001 % less than 0.001 %

As shown in Table III, it takes about 18 min to generate 3.7M cells for a dinosaur model, and
about 56 min for 11M cells. It is reasonable to wait, but there still remains to be improved in the
computational time aspect. For geometric quality analysis, we tested each model with two values, a
dihedral angle and an area ratio whose meanings are the following:

� Dihedral angle: the internal dihedral angle value between two adjacent faces in a tetrahedron;
� % < 15ı dihedral angle: the percentage of the number of cells including less than 15ı dihedral

angle among total tetra cells;
� Area ratio: the ratio of the maximum area of a face to the average face area of a tetrahedron

cell; and
� % > 1.5: the percentage of the number of cells with bigger than 1.5 area ratio.

As shown in Table IV, our approach gives good quality of mesh for the unstructured cells except-
ing very small number of cells, which can be removed in the post-processing step. Note that the
average area ratio is bigger than 1 because we do not generate uniform cells, but generate gradually
growing cells in size to connect two structured layers.

7. CONCLUSIONS

In this work, we have developed a unified framework to create hybrid mesh for general objects
when analyzing the viscous flow, which requires very high accuracy near the surface boundary of
the models. We combined the structured body-fitted mesh, Cartesian, and unstructured grid in order
to satisfy the accuracy near the surface boundary for the first layer, to make grids robustly and
efficiently for the Cartesian, and to connect the two layers. To satisfy different purposes such as
accuracy, robustness, and efficiency, different layers were used in this work, and for each layer, first,
we analyzed detailed requirements, and proposed moderate approaches. As a result, we adopted the
level set approach for the body-fitted layer, and scan conversion for the adaptive Cartesian layer.
For the transition layer connecting two structured layers with different orientations, we optimized

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2013; 71:891–909
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unstructured grids from the CDT result with initial point samples. We can refine unstructured cells
simply by adjusting the sampling density where there is need to split into smaller cells. Our approach
shows robust results about the geometries of the input model.

We have tested our framework with several complicated geometric objects as well as basic mod-
els in 2D and 3D, and it gives robust results in a reasonable time even though there is possibility to
improve computation time at several steps by introducing parallel processing using GPU [35].
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