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Abstract

Rotating savings and credit association (ROSCA) is a well-known microfinance association
widely used in many countries around the world with long histories. By considering extra
profits that such a system can provide when compared to banking transactions, we develop
optimization problems to achieve an optimal design of a ROSCA. We find that ROSCAs might
attract investors when deposit and loan rates from formal banking systems are not favorable.
Furthermore, optimal rates and optimal orders to maximize system outputs are reported.
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1. Introduction

1.1 Motivation

Modern banking and financial systems have evolved very fast, however it is not so long ago that
some sorts of informal financing operations, e.g. via friends and relatives, were very common.
Even in today’s world, such informal systems are not extinct. When formal banking systems fail
to provide easy-to-access loans and sufficient returns on deposits or when there are no fully mature
banking systems as typically seen in under-developed economies, private investors and small and
medium-sized enterprises (SMEs) might seek alternatives. For example, there could be loans with
less stringent conditions and deposits with more returns than in formal banking systems. One very
well-known example of such alternativesmcrofinancewhich has sprung up to meet this need in
many local communities around the world. It often refers to a formal or informal financial service
that is to enhance the financial sustainability of the investors who lack access to formal banking
services.

Savings and loans are the two main services that microfinance can provide, and it also delivers
other services such as money transfers and insurance, depending on service providers. Because
such services are similar to the ones in formal banking systems and their analysis are well estab-
lished in the existing research, we focus on one of the popular group-based models which incorpo-
rates savings and loans to satisfy participants’ common interest, the soroédig savings and
credit associatiofROSCA). Armendriz and Morduch [2005] explained ROSCA as one of the
roots of modern microfinance institutions. The basic framework of any ROSCA is as follows. A
certain number of participants agree to make a regular meeting system with a fixed maturity. And
at every meeting, each member puts in a fixed amount of money and the collected pot is then given
to one of the members who has not yet received a pot. At the maturity of a ROSCA, i.e., when
each member has received his/her pot exactly once, they either dissolve or restart the system.

Many SMEs use this system for business purposes, for example, to make a lump sum of money
before the full amount is accumulated, to avoid transaction costs or taxes, and so on. Buckley
[1997] mentioned that in Kenya, Malawi, and Ghana, ROSCA is a common source of enterprise
finance and offers SMEs a self-sufficient, voluntary-based organizational framework to save and
borrow money. Especially in Ghana, according to Owusu et al. [2013], most of the traders who
lack access to funding consider ROSCA as the easiest and readily available alternative to raise
funds to support their business operations. Similar cases can also be found in Asia. In Taiwan,
for example, Gelinas [1998] stated, “Until 1970, the banks for small and medium-sized businesses
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in Taiwan were rotating savings and credit societies, clearly part of the informal sector. Recently
integrated into the formal sector, these community-based banks still operateahiifunds now
totalling $3.8 billion.”

In addition to being an effective funding source, ROSCA can be approached from the per-
spective of sustainable enterprises. As Anane et al. [2013] mentioned, microfinance products and
services have economic impacts on SMEs: absorbing shocks and exposure, improving produc-
tivity, raising income or increasing savings. ROSCAs are no exception to this point. The paper
by Khan and Lightfoot [2011] conducted a qualitative research on the sustainability of economic
players supported by ROSCAs. To further highlight this point, Mbizi and Gwangwava [2013] in-
vestigated a similar research question in Zimbabwe. According to their research, ROSCAs help
to smoothen business financial cycles, to manage cash flows, and to facilitate recapitalization of
enterprises by pooling financial resources to one member per time period, thereby enhancing the
operational sustainability of local enterprises.

Furthermore, it is intuitively appealing that ROSCAs play an important role in developing
countries because they can replace some capital market functions [Scholten, 2000]. However, even
in countries with big credit markets, some forms of ROSCAs still exist. For example, ROSCAs of
the ordered type (hereafter, ordered ROSCA) in which there is a pre-determined order of recipients
are very popular in South Korea. (See Scholten [2000] for another example in Germany and
Austria.) We aim to better understand this ordered type ROSCA which coexists with mature formal
financing systems. In particular, we are interested in the issue of ROSCA design mentioned in
Besley et al. [1993] such as the rate of a ROSCA and the order of recipients. The central question
we attempt to address is when a ROSCA can be beneficial compared to formal banking systems
and we do so in both of the cases where the credit ratings of participating members are the same or
different. To achieve these goals, we adopt the approach of replication strategies that are typically
used in asset pricing theory. By comparing cash flows from a ROSCA with those from banking
transactions, we explicitly define extra payoffs to ROSCA participants.

Our contributions to the literature are as follows. First, we analyze the ordered ROSCA which

is an important type of ROSCA, but has received relatively less attention. And second, we provide
prescriptions about when a ROSCA is actually good, what rate should be used, and how many
members can be accommodated in the system, etc. Even though our analysis is on the ordered
ROSCA, it is worth mentioning that thex postanalysis of a random ROSCA is the same as the
analysis of the ordered one. This is because the contributions of a member in the random case
can be transformed into those in the ordered case, by selecting a suitable rate once the time of
receiving a pot is realized. Therefore, our analysis can be useful for understanding of random
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ROSCAs. Lastly, we take a more theoretical approach to the analysis of a famous form of informal
microfinance system whereas the existing research in the Operations Research community by, for
example, Guérrez-Nieto et al. [2007], Gudirez-Nieto et al. [2009], Amersdorffer et al. [2014],

and Piot-Lepetit and Nzongang [2014] is based on statistical techniques such as data envelopment
analysis. Thus, we hope that this work sheds some light on the design issue of financial products
at microfinance institutions.

1.2 Background and related works

Microfinance operates both formally and informally, and so do ROSCAs. Formal ROSCASs run
by commercial banks in Argentina, Ghana, and Mexico, for example, are explained in Schreiner
[2000] and Vonderlack and Schreiner [2002]. They have long maturities, many members, and
big pots. In this model, a bank pays interest to members who are yet to get the pot and receives
interest from members who got the pot in the past. Also, the sustainability of a system is now
the responsibility of banks (hence, fees are charged) and such products are under government
regulations. Other examples include building and loan associations in Germany and Austria called
Bausparkassethat account for 15% of loans in Germany, 45% of loans in Austria, and more
than 20% of household deposits, according to Scholten [2000]. This model was adopted by other
European countries such as Hungary and Poland in 1990’s. On the other hand, informal ROSCAs
do not have any guarantee of insurance in the event of a member’s default, so they have shorter
maturities, less members, and smaller pots than formal ROSCAs. In addition, interests are paid and
received according to the rules made by members. Informal ROSCAs are more widely observed
around the globe in various forms. Instead of listing all such practices, we briefly mention some
notable examples from Asian and African countries where ROSCAs have long histories and they
are still actively in use.

e China and Taiwan China and Taiwan has a common history of 3,000 years of ROSCAs,
calledhehui As reported in Li and Hsu [2009], there are several typdsetiui For exam-
ple, lunhuiis the ordered ROSCAjaohuiselects a recipient each time randomly (random
ROSCA), andbiaohuihas a secret bidding procedure to choose a recipient at each meeting
(bidding ROSCA). Especially in Taiwan, according to Levenson and Besley [1996], random
and bidding ROSCAs are popular as a savings device and account for a large part of the in-
formal financial sector, at least 20.5% and it might be as high as 85% according to another
estimate.
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¢ Japan Dekle and Hamada [2000] studied ROSCAs in Japan, cabednd they are mostly
random and bidding types. This has been used for about 800 years. In the early 20th cen-
tury, theko was flourishing but the implicit rate of return was often so unfair that the Japanese
Ministry of Finance provided a formula for the rate. After World War I, miksgt became so
large that they formed regional mutual banks, but, finally converted into commercial banks.
Nevertheless, small, informkbs still operate in Japan.

e Korea Campbell and Ahn [1962] describégle the ROSCA in Korea, which is about 2,000
years old and yet quite popular today. They are mostly ordered and bidding types. Both
forms usually contain interests which are accrued on regular contributions of a member of
kyeafter she receives a pot.

e Ghana and other West African countrie&ccording to Bortei-Doku and Aryeetey [1996],
rotatingsusuclubs, the ROSCAs in Ghana have a high-profile due to the lack of proximity to
banks in general, and many of them are founded by a need to overcome frequent shortages of
cash in their business activities and in crisis situations. Bouman [1995] summarized ROSCAs
in other West African countries such as Congo, Liberia, Ivory Coast, Togo, Nigeria, and
Cameroon, where 50 to 95 percent of adults participate in ROSCAs.

e Kenya Kimuyu [1999] conducted a survey in the Kenyan community which showed that
45% of those questioned were participating in ROSCAs. According to Anderson and Baland
[2002] and Anderson et al. [2009], most of ROSCAs in Kenya are ordered ones, and only a
few of them are random ROSCAs. They could not find any bidding ROSCAs in their surveys.

e South Africa According to Burman and Lembete [1996], ROSCAs are known by various
names in South Africa such asokve] gooi-gooi umgalelg mahodisanaand umshayel-
wana In 1988, the National Stokvel Association of South Africa was established to claim
the rights ofstokvelmembers and promote recognitionstbkvelsoy formal financial insti-
tutions as a source of informal credit.

In the large ROSCA literature, one key work was that of Besley et al. [1993] who provided
an economic analysis of ROSCA, focusing on its economic role and performance. Their work
was motivated by ROSCA practices observed in immigrants groups in the United States as well
as in developing countries such as India. The model assumes that members of a ROSCA do not
have an access to credit markets. The members have the objective of increasing their lifetime
utilities dependent on an indivisible durable consumption good (a participant receives a constant
flow of services for the rest of the lifetime upon purchase). Under some additional assumptions
on utilities and preferences, they showed that ROSCAs (random or bidding) improve members’
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lifetime expected utilities compared to the case where individuals make savings by themselves.
In addition to this result, discussed are the effect of heterogenous members, i.e., with different
preferences, and the sustainability of ROSCA due to its informal nature.

More qualitative and quantitative investigations by many researchers followed. Bouman [1995]
compared ROSCAs and Accumulating Savings and Credit Associations (ASCRAS) in which the
savings are not instantly redistributed but allowed to accumulate to make loans. The author also
proposed a hybrid of ROSCA and ASCRA where at each meeting, the highest bid is not redis-
tributed but utilized as a loan fund. In the literature, the performances of ordered, random, and
bidding types are often compared. To mention a few, Besley et al. [1994] studied allocations
achieved by random and bidding types as well as those obtained by a credit market. A similar
comparison was done by Kovsted and Lyk-Jensen [1999]. But in the latter, the authors developed a
game theoretic model and assumed that members of a ROSCA can raise a fund outside the system
at positive costs. Anderson et al. [2009] found that enforcement problems on defecting members
are more severe in random ROSCAs than in ordered ones, and that the system is not sustainable
without social sanctions regardless of whether it is random or ordered. Klonner [2003], on the other
hand, extended existing models to incorporate risk-averse agents who might suffer from stochastic
income shocks. Also, there is a model developed by Ambec and Treich [2007] which explains the
existence of ROSCAs from the viewpoint of self-control problems.

In terms of finding conditions that would make ROSCAs more appealing than banks, our work
shares the same spirit with van den Brink and Chavas [1997]. The authors looked at profits from
ordered ROSCAs and from interest-bearing savings accounts but without any discounting nor in-
terest compounding. Our research has four different aspects from their work. First, we utilize
savings and loans together to replicate ROSCASs’ cash flows, which helps us find profitable con-
ditions of ROSCAs. Second, ROSCAs are found to be still feasible even when later positions
receive more benefits via a quantitative analysis whereas van den Brink and Chavas [1997] noted
that earlier positions are better in general. Third, we provide an answer to an optimal design prob-
lem of an ordered ROSCA with and without homogeneity of participants. Lastly, discounting and
compounding calculations are employed in this paper.

The remainder of the paper is organized as follows. Section 2 introduces the model and formu-
lates an optimization problem to derive an optimal design of a ROSCA. In the section that follows,
we analyze the feasibility condition and solve for an optimal solution when members of the system
are homogeneous in terms of credit ratings. In Section 4, we extend the analysis to the case of
heterogeneous members, and Section 5 concludes. All proofs can be found in the appendix.
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2. The Model

We begin our discussion by describing one form of ordered ROSCAs that is in widespread use.
This informal finance system is assumed to hav@emberssay member 1 to membe; and
maturity T at which it ceases to function. Throughout the paper, we assume that there are at least
two members to avoid triviality, i.en > 2. In this system, members have regular meetings at
times{T/n,2T/n,--- , T}, so the total number of meetingsns The important components of the
system are itsnterest rater and the order of members according to which exactly one member

is entitled to receive a certain amount of cash at each meeting. We note that this rate determines
returns to each member and it is different from banking deposit or loan rates. In practice, this
rate is determined by an agreement among members before starting the rotation, depending on
domestic economy, economic status of members, etc. Although the determinants of the rate have
not been fully investigated in the literature, it is reported by Yu [2014] that the average interest rate
in ROSCAs was around 0.5%. To be more specific about the system features, for each member,
the amount of cash to put into the system at each time is different depending whether it is before
she receives a pot or it is after. If it is before or at the time of the receipt, then she delivers a base
amount, say 1, and if it is after, thdn+ nr. If she is supposed to receive a pot at kil meeting,

then the total amount of cash receipig(r) := n+ (k — 1)nr. This makes the total cash inflow to

the system and the cash outflow equal at each meeting time. We provide the cash flow diagram of a
member in thé-th position in Figure 1, where each integeén circles means theth meeting, the
numbers near down arrows are cash outflows, and the number near the up arrow is the cash inflow
at thek-th meeting.

Besides the basic description of the model, we make some additional assumptions. First, we
assume that all members abide by the contract details and do not default on their obligations. This
is not entirely realistic because there were incidents such that one of the members ran away, making
negative returns to members who had not received his/her pots. In this work, however, we focus
on properties and design issues of the system, leaving the task of incorporating such default risk
of a system as a future work. Second, different from the majority of the literature on ROSCAs, we
assume that a mature banking system exists and that all members freely transact with banks. As
it is typical in real world, a bank provides a single deposit ratee.g., three months CD rate, but
requires different loan rates depending on the credit rating of each customeﬁi? f@ymember
i. Throughout the paper, we assume that rq < rl(l) <. < rl(”) without loss of any generality.

Here, deposit ratey and loan ratel(” are the rates for each time period between the meetings. In
all examples we consider in this paper, we take the interval between meetings equal to one month,
andry andr’ are monthly rates.
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Next, let us consider the following hypothetical banking transactions. Throughout thk first
meetings, membarmakes a deposit of siZeat each meeting. At thith meeting, she withdraws
all the savings of which size is denoted By and, additionally, takes a loat}’ with rater(). This
loan is paid back in full by the payment df+ nr for each of period& + 1 to n. The termnr means
the simple interest of the loan for each period. Based on above assumptions, we observe that

Y@ +nny/@+rl), ifk=1---,n-1

k-1
D=y (L+rg), V()=
,Z; “ 0, if k=n.

The cash flow diagram is given in Figure 2. Notice that in these transactions the cash outflows
for member are exactly the same as in the case of a ROSCA. Hence, the difference between the
total cash inflows of banking transactions and a ROSCA can be understood as the extra profit by
participating in a ROSCA. We write the extra profit of memberthe k-th position as follows:

mP(r) = M(r) - D= 20(r), i,k=1....n.

By looking at this difference, one realizes that the minimal condition for the existence of a
ROSCAs thaﬂﬂ)(r) is nonnegative; otherwise, she would have earned a better return via banking
transactions. Therefore, in the sections that follow, we conduct a feasibility analysis of the system
by considering the conditioﬁ[S_)(i)(r) > Oforalli = 1,...,n whereo represents the order of
members, i.e., membereceives a pot at the(i)th meeting. Clearlyy is a permutation of the set
{1,...,n}. Later in the paper, we compare different orders of members in terms of the sum of extra
profits. For this purpose, we need a measure to compare extra profits at different meetings. We
note that if a member makes an additional bank depdit) := TI(r)/(1 + rq)* at time0, then
this offsets her extra gain from a ROSCA at #ih meeting. We call this amount a discounted
extra profit of member in the k-th position . Hence, we use this as a tool to make comparisons
between orders. One of our main questions, then, is the following optimization problem:

n

max ) a0 (r)
M= 1)
st. rx0 (=0 i=1....n

for given ratesq andrl(i)’s. An optimal solution represents an optimal design of the informal
finance system that guarantees better returns to the members than banking transactions and maxi-
mizes the total extra profits.

Remark 2.1 Let us consider random and ordered ROSCASs having the same interegsanatéhe
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same number of participantsfor their ex-antecomparison. Then, in a random case, memiser
discounted extra profit is one ofpossible valuesz(r), z0(r), ..., z)(r), with probability 1/n

each, whereas the discounted extra proﬁf;ﬁ(r) in an ordered case. The choice between the two
types of ROSCAs might depend on this member’s risk-taking characteristics. For instance, let us
take the power utility functiomi(x) = (x**) — 1)/(1 - p). It can be shown that, fgr sufficiently

large (extremely risk averse), the ordered ROSCA gives a higher utility than the random one unless
o(i) = argmin z4(r). On the other hand, in the case of a random ROSCA, the timing of the receipt
of a pot may not necessarily meet the member’s needs, which means a suboptimal use of funds.
Along the same line, we lastly observe that an optimally ordered ROSCA always dominates in the
sense of expected total profits, thanks to the formulation (1).

3. System Feasibility and Profitability

In this section, we assume that the members of a ROSCA@mgeneoums the sense that their

loan rates are equal. This simplifies the analysis and allows us to avoid unnecessary complications
in delivering our main messages. For the sake of notational convenience, we drop the superscript
@) from r?, ¥, 20, and2?. We are then concerned with the feasibility conditiaur) > 0

(or equivalently Il (r) > 0) for all k = 1,...,nin the problem (1). When it is possible to find a
nonnegative real numbeitthat satisfies the condition, we call it admissiblerate.

3.1 Benchmark case

A closer look at the extra profliy(r) reveals that it can be expressed by two auxiliary functions
f(-) andg(-) wherell,(r) = f(K)r + g(k) and

_ k—-n
_ n[k— 1- 1 (1r+ ) ’
I

n-k
f(k) = n[k—l—Z(1+r|)‘j
J

-1

(1 + rd)k -1 1- (1 + r|)k‘”
Iq r

k-1 n-k
gk =n- ) (1+rg) = 3 (L+r) ' =n-

j=0 j=1
fork = 1,...,n. Often we takeR, as the domain of (-) andg(-), after completing summations.
These two functions are monotoni;) increasing andy(-) decreasing. The following lemma is
useful throughout this subsection. For a real numbéx] and| x] denote the smallest integer that
is not less thax and the largest one that is not greater tkarespectively.
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Lemma 3.1 There exists a unique real numbdeyrin the interval(1, n) with f(ky) = 0. And ifh(-)
is a real valued function such thia(k) = —g(k)/ f (k) forall k = 1, ..., nwheneverf (k) is nonzero,
thenh(:) is increasing on each of the sdtls- - - ,[ko — 1]} and{[ko + 1],--- , n}.

The lemma implies that(1) = miney... f,-11 N(K), andh(n) = MmaXcky+1j.-.n N(K). Now, we
define a set

= [h(n), h(1)]

if the left end is not greater than the right end. Otherwigas set equal to the empty set. In
addition, whenZ is not empty, it is a subset @&, becausef(n) > 0 andg(n) < 0, which can

be easily checked. Figure 3 illustrates hdws constructed fronmh(-). It clearly showsh(:) is
increasing up tdky — 11 and increasing again frofky + 1]. In the figure kg is located between
5and 6. As long ag is nonempty, we can visualize the interval as the two dashed lines in the
graph albeit the position df; might be different. This interval plays a crucial role in describing
the following result, which is the first main result of this paper.

Theorem 3.2 The intervalf is the set of all admissible rates. In addition, wh&ms nonempty,
the optimality for the probler{l) is achieved at = h(1).

Albeit simple, the above result completely solves our initial optimization problem (1) at least in
the case of homogeneous members. This solution prescribes one way of utilizing the fact that there
are typically positive interest rate margins, i.e., loan rate minus deposit rate, in a formal banking
system. Indeed, if the interest rate margin is zero, then it is possible to show that there are severe
restrictions on the choice of an admissible rate.

Corollary 3.3 Suppose that the interest rate margin is zero, rge= r,. If the rates are zero or if
there are only two members in the ROSCA, then we Ravdry/2} = {r,/2}; otherwise I = 0.

On the other hand, it is simple to verify that the equivalent statemedt 0 is

Z(1+rd)' Z(“r)]g(n—l)z. )

Note that/ is a single point set when the equality holds. In addition, the left hand side strictly
increases iy and strictly decreases m. Hence, for each fixedy (or r)), there is a unique,

(or rgq) at which I collapses to a single point. We omit detailed computations because they are
straightforward, but record one consequence as a corollary.
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Corollary 3.4 For each fixedy, there is a threshold value foy such thatZ has zero length for
the first time, i.e. when the equality holds(&#). A similar statement holds far. Consequently, if
the interest rate margin is sufficiently large, then there exists an admissible rate.

The importance of this observation lies in that it provides one possible reason why ROSCAs are
still popular in countries with developed finance systems. In the literature, ROSCAs are usually
described as a method of accumulating cash amounts for purchase of goods in under-developed
economies. Actually, it was discussed by, e.g., Callier [1990] that they will disappear as capital
market integration progresses because lumpy expenditures are possible due to the accessibility to
credits. However, it is not difficult to find out that the informal finance systems are still popular
among citizens in countries with big credit markets, e.g., Japan, South Korea, and Taiwan. Easy
access and no tax can be one reason for such popularity, but the above analysis shows that it is
actually possible to make better returns when the interest rate margins are not favorable. One
related observation is that the threshold is usually formed when the interest rate margin is large
enough. This essentially follows from the difference between the banking rates and the return of
the ROSCA (no compound interests). Hence, having nonzero interest rate margin is not enough to
construct a profitable ROSCA.

Although it is tempting to conclude that there are more opportunities to exploit if the interest
rate margin increases, the relationship is not that simple be¢audepends omy or r; as well as
the margin itself. One such example is given in Figures 4 and 5. Figure 4 shows the graphs of
the intervall as a function of4 when the interest rate margin is fixedsat 0. Figure 5 contains
similar information but graphs are illustrated as a function of the interest rate ndéangih three
different levels ofrq. The former shows that overali| tends to increase as the margidoes so,
but its size changes nonlinearly gsvaries, while the latter illustrates that for each deposit rate,
there is a threshold level for the interest rate margin satisfying 0 beyond whichl becomes a
nontrivial interval and there are admissible rates.

A more interesting relationship is exhibited in Figure 6. It describes graphically the minimal
interest rate margin (as a functionrgj above whichZ| becomes strictly positive so as to make a
ROSCA profitable. It also shows how those graphs behave as the number of participants increases.
Again, all rates are computed on a monthly basis. Basically, it tells us that we need higher interest

1The World Bank reports the interest rate spread, defined as the interest rate charged by banks on loans to private
sector customers minus the interest rate paid by commercial or similar banks for demand, time, or savings deposits,
in Japan every year, and Google Trends provides search query time series on rotating savings and credit association in
Japan. If this Google Trends result is interpreted as the expression of interests on ROSCAs in Japan, then this gives
an indirect but empirical relationship between the interest rate margin and the demand on ROSCAs. The correlation
between those two time series from 2005 to 2014 is 0.8932.
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rate margins to get a ROSCA system going if there are more members in the system or the deposit
rate gets better. Looking at this latter observation from a different point of view, one realizes that
there should be a certain threshold for the maximal number of members in a ROSCA if all other
model parameters are fixed at constants. In fact, the left eAictah be shown to diverge to infinity

asn increases while the right end converges;tarhis is illustrated in Figure 7. The graph shows

the maximal number of participants that can be accommodated in a given ROSCA as a function of
rq at three different levels af. One can clearly see that a ROSCA can have a larger number of
members when the interest margin becomes larger.

3.2 Additional issues

Let us turn our attention to the original question (1). Even though it is clear that members can ben-
efit from participating in a ROSCA in certain situations, the nonnegativity of extra profits might
not be the only constraint. As mentioned earlier, there exists the possibility of a member reneging
on the ROSCA rules and there are examples in which such incidents caused social concerns, lead-
ing to regulatory problems as well as increased business bankruptcies and corporate debts. Also,
there are some research works on such behaviors and the design of ROSCAs to prevent them. For
instance, Wei and Lijuan [2011] proposed the legal regulation of ROSCAs applying partnership to
those systems. For further issues, we refer the interested reader to Besley et al. [1993] and Handa
and Kirton [1999]. In addition, a member might lose investment opportunities if the timing of the
receipt of a pot is late. Due to these issues of sustainability and opportunity costs, it is plausible
that members in later positions would want additional compensations. Apart from these concerns,
it is also reasonable to imagine that members are also likely to compare their extra profits to each
other. This is a fairness issue which often becomes quite subtle. We argue below that this problem
cannot be resolved completely, but still a partial answer is presented.

Hence, to deal with the first problem at least partially, we impose the following constraint:
m(r) < ma(r), k=1,...,n-1 3)

In other words, more extra profits to members who receive pots later. It is easy to see that this
condition is transformed to.1(r) — mc(r) = A¢(K) r + Ag(k) > Oforallk =1,...,n—1where

_ 9k+1) gk
o (1 + rd)k+1 (1 + rd)k'

f(k+1) f (k)

Arll) = L+ )<L (1+ g~ Aq(K)

Therefore, the optimization problem (1) with the additional constraint (3) becomes an easily im-
plementable linear programming problem. The next result provides a feasibility analysis and a
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solution for this question.

Proposition 3.5 There exists a nonnegative ratsatisfying(3) if and only if the following condi-
tion holds: 2 (k= 1))
M —(K—=1)rq
(r—rg) < 1@ty k=1,...,n-1

In this case, the feasible region for the probléihplus(3)is 1’ := Im{r L r > max {—Ag(k)/Af(k)} }
and an optimal solution is obtained at the right endpoinf af

Simple sufficient conditions for (3) can be found. For example, the condition in the proposition
is satisfied if(r; — rq) < (2 — (k — L)ry) for all k, which is equivalent t¢n — 2) < 1/rq + 1/r,.
This expression shows the relationship betwegn, andr, to guarantee the increasing returns to
ROSCA members more clearly; too many members or sufficiently large deposit/loan rates make
the inequality invalid. Actually, the parameter values in our numerical examples are small enough
to satisfy (3), but it is numerically verified that the inequality in Proposition 3.5 is violated for
largen, rq, Orr;. Hence, a large interest rate margin is not enough to meet the constraint on the
increasing property of discounted extra profits.

As for the second issue of fairness, one easily can see that there is no general functional form
of rater in terms ofry, ry which yields the same extra profit for all members. This is becaiyge
is linear inr but D and £,(r) are higher-order polynomials iy and1/(1 + r}). Instead of such
an extreme case, we consider an approach of imposing a bound on the mean squared deviation of
extra profits:

n

_ 2
Z (md(r) - 7(N) < M (4)
k=1
wheren(r) = n"t Y1, m(r) andM is some positive real number. The left side of the inequality is a
quadratic function of, sayar? + 2br + ¢ with positivea. The next result parallels Proposition 3.5.
We omit its proof which is almost trivial.

Proposition 3.6 There exists a nonnegative ratsatisfying(4) if and only ifM > c—b?/a. In this
case, the feasible region for the probléi) plus(4)isI” := I N {r rar+2br+c < M}, and an
optimal solution is obtained at the right endpointff.

Remark 3.7 The best possible to achieve fairness in the sense that we explained above, if ad-
missible, is the rate* that minimizes the mean squared deviation in (4). Cleafly, —b/a. Note
thatr* is different from the optimal solution in Proposition 3.6. Figures 8 and 9 are two examples
from which we see that' is located around the middle @t
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3.3 Defaultable case

In this subsection, we assume that the system can break down due to the default of a member
or some exogenous causes. All other assumptions remain the same as in the benchmark case.
For default probabilities, we adopt the constant hazard rate model which is based on exponential
failure distribution, assuming that defaults happen between the meetind3, £&®(t < 7 < t+1),
t=1,...,n—1, denote the probability that a default occurgat (t,t + 1). Whent = n, Q, =

P(r > n) is the probability of no default. Then, the constant hazard rate lea@s+oe (et - 1),
t=1...,n-1 andQ, = e, This type of approach has been adopted in other contexts

as well. For example, Banasik et al. [1999] applied survival analysis techniques to study credit
scoring systems.

We consider the same hypothetical banking transactions as in Section 2. The difference be-
tween the benchmark case and the defaultable case occurskwhen= | 7], i.e., a ROSCA fails
before the member ik-th position receives the pot. In this case, by ceasing to make deposits at
a bank and withdrawing all the savingslkatwe can match the cash outflows in a ROSCA and
banking transactions. However, the cash inflow of a ROSCA is zero while the banking transaction
givesDy(1 + rg)<*. Hence, the extra inflow isDy(1 + rg)< .

On the other hand, K < t, we note that there is no cash outflow for a ROSCA-atL,...,n,
while the member is obliged to pay bafik- nr in each period in the banking transactions. This
makes the extra profit in the defaultable case is no less than the extralp@jit= Mi(r) —
D — L(r) in the benchmark case. Consequently, for example, the condlti@wh > 0 becomes a
sufficient condition that guarantees the profitability of a ROSCA in this particular situation. Then,
the outflow of the ROSCA is not bigger than that of the banking transaction.

Combining these two separate considerations, we realize that one sufficient condition for the
profitability of a ROSCA in the defaultable case is that the expected extra inflow is nonnegative,
i.e.,

n
ITi(r) := Z IT(r) - Q>0
t=1
where

—Dy(1+rg)t, if k> t;
My (r) = ,
M (r) — Dk — L(r), otherwise

fork = 1,...,n. We callm(r) := ﬁk(r)/(l + rg)¥ the discounted expected extra inflow of the
member in thek-th position . Now, we can proceed similarly as in Section 3.1, the main question
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being the optimization problem

n
max Z m(r)
' k=1
st. r>0, m(r)>0, k=1,...,n

for givenry, r;, andaA.

The expected extra infloﬁk(r) can also be expressed by two auxiliary functidT(l-s) andg(-)
wherellg(r) = f(K)r + g(k) and

n-k
f(K) = neg D [k ~-1- Z A+r)7,
=

J:

n-k

k-1 .
n- z{; [el@+rg) - > @+n)
j=

=1

(k) = e

b

fork = 1,...,n. As before, we complete the summations andRises the domain of_(-) and

g(-). The next lemma is helpful in deriving the following corollaries which provide consistent
results with Section 3.1 as long as the hazard rate is small enough. For notational simplicity, we
setd* = log{(1+r)/(1+rq)}.

Lemma 3.8 There exists a unique real numbeyrin the interval(1, n) with f_(ko) = 0. In addition,
if 1 < A*andh(-) is areal valued function such thiatk) = —g(k)/ f (k) forallk = 1,...,nwhenever
f(K) is nonzero, thei(:) is increasing on each of the sdtls- - - ,[ko — 17} and{|ko + 11,--- , n}.

A similar implication as in Section 3.1 can be made from this lemma. Let us consider, for any
Ain the interval[0, 1] , we setﬁ(l) = MiNko1... [ko-1] ﬁ(k), andﬁ(n) = Ma%=|ky+1)..n ﬁ(k). We then
define an interval

7 2= [h(n), h(1)|

if h(n) < h(1); 7 = 0 otherwise. It can be easily checked tHatc R, becauseh(n) > O.
Additionally, one can verify that > 1* impliesf_ = (). This means that the sufficient condition for
the profitability of a ROSCA does not hold if the default rate is large, which concurs with intuition.
Consequently, we shall impose this constraint for the rest of our analysis. The next result is the
analogue of Theorem 3.2 for the defaultable case. Its proof is quite similar except that we replace
(1 + rq) with e'(1 + rg), hence omitted.
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Theorem 3.9 Assume that < A*. The intervall is the set of all admissible rates. In addition,
when’ is nonempty, the optimality for the probldf) is achieved at = h(1).

From the results so far, we see that zero interest rate margin implie®, thus the profitability
of a defaultable ROSCA cannot be guaranteed. In addition, it is not difficult to show that the length
of Tisa decreasing function df rq4 and an increasing function of. In fact, for fixedrq (r), there
is a threshold for, (r4) beyond which” becomes nonempty as long.as A*. Also for fixeda, we
can find an admissible rate if the interest rate margin is large enough, which is a similar conclusion
to Corollary 3.4.

The relationship between the hazard rate and the IengI_hisiIIustrated in Figure 10 where
|I_| is drawn as a function of. As the intuition suggests, the length decreases as there is a higher
chance of defaults and the interest rate margin is lower. Figure 11 shows a similar result as in
Figure 5, graphs o[tfl in terms of the interest rate margin. However, the length is smaller with
A = 0.3% compared tal = 0 case.

In the next section, we conduct the basic analysis and compare the performances of three opti-
mization problems in a more general setting, i.e., the original optimization problem (1), the same
problem with the additional constraint (3), and lastly the original problem with (4). We also con-
sider the defaultable case of ROSCA for heterogeneous members.

4. Optimal Ordering and System Efficiency

As opposed to the previous section where we considered the casenojeneousmembers, we
are concerned witheterogeneoumembers in this section. Recall that membes assumed to
have the loan rate” and the loan rates are orderedas rq < rl < --- < r™. The critical
difference is that we have order dependent constraﬂ*}igsér) > O for all i. From now on, we call
such a nonnegative rateadmissible

4.1 Benchmark case

Before presenting our solution approach, we introduce some notation for convenience. First, we
set
—r(r) = —00(r)/(1 + ro)* =t awr + Bi
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whereay andgy are values dependent apandr’ only. Second, for eachk € {1,...,n}, we use
X for a variable with values 0 or 1. Since any permutators a bijection from{1,...,n} onto
itself, we can rephrase (1) as the following mixed integer nonlinear programming:

Problem Qq

min Z Xik (@il + Bik)

A e
s.t. r>0,

Xik(aikl’+ﬂik)ﬁo, i,k=1,...,n,
n

ka=1, k=1,....n,

This is exactlyProblem Qg in Oral and Kettani [1992] except for that there are quadratic
constraints in our formulation. However, it turns out that they do not add extra complexity because
those terms also appear in the objective function. We follow the approach taken in Oral and Kettani

[1992] and, for this, we need to find upper and lower boundsfar+ gi for eachi, k.
Going back to the original problem (1), suppose that we have a fedsilslesuch thatrs_)(i)(r) >
Oforalli = 1,...,n. Then, there exists somewith o(i) = 1 becauser is invertible. Thus,

a1l + Bip < 0. But, we note
Ny +r’)’

j1 = >O:>rs—&.
1+rd i1

Therefore, for any feasibler, r), we get

0<r<-min P =:T.
i=1,...n @j1
On this compact intervdl0,T], linear functionsair + B obtain global min and max and we
write D;, andDj, respectively, following the notation in Oral and Kettani [1992]. Then, based on

Proposition 1 in their paper, a mixed integer programming (MIP) appears:
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Problem Q,

n
min > Dy + 4
i,k=1

Xik.T ik
s.t. r>0,
DiXk+ ¢k <0, iL,k=1,...,n,
Ck = ail + Bk — DXk — Dy (1 — %), i,k=1,...,n,

Looking closely at the constraints, X, = O, then the constraints afy reduce tay = 0. If
Xk = 1, then itisO > D + ik > el + Bik. Since the coefficient db; xy + i in the objective
function is 1, it is never optimal to havg, + ik > awr + Bik whenx = 1. This reasoning shows
that two problems are equivalent. See Oral and Kettani [1992] for more details. Hence, we can
solve (1) using MIP solvers as long agandr"’s make the problem feasible.

Although the above formulation would yield an optimal design of a ROSCA, it is not analyti-
cally tractable and does not provide insights. Hence, we choose to work on a subset of the feasible
region for the rest of this section. First, we defii€@ to be the set of admissible rates for the
ROSCA with homogeneous members that have depositgated loan rate”. Then, it is not
difficult to check thatr® c - .. ¢ 7, Indeed, the right endpoint di¥) is, if non-empty,

n-1- M@ +r0) n-1 1
Ny R+ oy O o0

which is increasing i thanks tor® < --- < r”. And the left endpoint of ) is independent of
r¥). As aresult, ifr € 70, then it isoc-admissible for any order. A new optimization problem,
as a second step, is formulated as follows:

()

We emphasize that this problem is not a mere mathematical exercise. The nonnegativity of extra
profits works as an incentive for a member to participate in a ROSCA. It is conceivable that since
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a member might not know her positiex ante she wants to make sure that she gets a nonnegative
extra profit regardless of her position. Hence, having-admissible rate for any order can

be considered as a reasonable incentive scheme in a ROSCA with heterogenous members. The
following theorem parallels Theorem 3.2.

Theorem 4.1 Suppose thab) is feasible. Then, the optimality for the problem is achieved at the
right endpoint off® with an optimal ordew (i) =n+1-ifori=1,...,n.

Remark 4.2 Voorneveld [2003] argued that, in the discussion of optimality, one plausible alter-
native is the notion oPareto optimality This type of approach is quite common as we see, for
example, in several studies using Pareto optimality in multi-objective optimization problem such as
by Shulkla and Deb [2007], Warburton [1987], Yano and Sakawa [1989]. We say ikd®areto
optimal if there is no other order which results in at least one individual having the discounted
extra profit better off with no individual having it worse off, i.e., acsuch that forall = 1,...,n,

(1) < 2l (r) with at least one of inequalities being strict. It is obvious that the optimal order

in Theorem 4.1 is Pareto optimal; otherwise, it couldn’t have been optimal in the first place. In
the case of a ROSCA with homogeneous members, every order is Pareto optimal. However, the
result is quite different in the heterogeneous case. As an illustration, Figures 12 and 13 exhibit the
efficiencies of all possible orders sorted from the lowest to the highest with a Pareto optimal order

marked with a square. Here, the efficiency of an ordés defined by

Zinzl ﬂg-)(i)(r)

(M

efficiency(o) = .
MaXses Zj:l ﬂg(j)(r)

whereS is the set of every permutation ¢f,...,n}. One also notices that, depending on pa-
rameters, Pareto optimal orders can be observed in different regid@sl¢f However, we can

prove some sufficient conditions that guarantee the Pareto optimality of every order. The reader is
referred to the appendix for a proof.

Proposition 4.3 Every order is Pareto optimal i{"(r) is strictly increasing irk, or if z{"(r) is
strictly decreasing irk.

Remark 4.4 We note that there have been continued interests in the efficiency of microfinance
institutions as we briefly mentioned in the introduction. For instance g@ati-Nieto et al. [2007]
studied the financial efficiency of microfinance institutions, and &@rei-Nieto et al. [2009] ex-
tended their previous model to measure both financial and social efficiency. Amersdorffer et al.
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[2014] assessed financial and social performance of credit cooperatives in Bulgaria, and Piot-
Lepetit and Nzongang [2014] considered the relationship between financial sustainability and
poverty outreach within microfinance institutions in Cameroon. These are empirical studies us-
ing data envelopment analysis, and their efficiencies are calculated to compare one microfinance
institution with another. The efficiency in this paper takes a different point of view as it aims at
understanding analytically how much the total discounted extra profit is reduced with non-optimal
orders applied.

One interpretation of Theorem 4.1 is that ROSCAs can be beneficial for members who are less
financially stable and thus possibly in greater needs of cash by receiving pots at earlier times while
their cash-flow structures are socially optimal at the same time. As a final remark, we can also
show that ift™ < --- < 1", i.e., there is no pair of members with the same credit rating, then the
order in the theorem is the unique optimal order that achieves the maximal efficiency.

4.2 Additional issues

In this subsection, we study two additional constraints and the resulting optimal solutions as in
Section 3. The first one is the constraint by which a ROSCA compensates opportunity costs caused
by receiving pots at later times. Similarly as in the previous section, it can be expressed as

() <mpy(r), k=1,....n-1 X

for each memberr However, in the proof of Proposition 4.3, it was shown thaﬂl’f(r) Is increas-

ing in k, then so ist{(r) for all i. Thus, (6) is equivalent to{”(r) < 7" (r) fork = 1,...,n— 1,

Then, we are in the exact same position as in the case of homogeneous members exgapt that
replaced Witrrl(”). Hence, the same arguments in the proof of Proposition 3.5 lead us to the propo-
sition below. Regarding an optimal order, we note that the constraint does not affect the order of
members, hence the optimal order in Theorem 4.1 remains unchanged. The obvious analogues of
A¢(K) andAg(k) areA” (k) and A (k).

Proposition 4.5 There exists a nonnegative ratsatisfying(6) if and only if the following condi-

tion holds: o)
r’(2—-(k-2r
(10 -r) < S enn
1-(1+1")
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In this case, the feasible region for the probl€®) plus (6) is 70 := 7MW N {r r> max({ -
AP ()/AP (W}, and an optimal solution is obtained at the right endpointZf” with o-(i) =
n+1-i.

From above, we realize that the spectrum of loan rates is one meaningful factor which deter-
mines the feasibility and optimality of a ROSCA. The loan rate and the interest rate margin for
memberl set the scene for a ROSCA, but the feasible region can be significantly restricted de-
pending on the loan rate and the interest rate margin for memiégne sufficient condition for the
feasibility is thatr(" — rq is large enough to make&® nonempty and plus thén—2) < 1/rq+1/r"™
is also satisfied. This second condition gives us a clear picture about the relationship between pa-
rameter values that guarantee the increasing returns to ROSCA members. Similarly to what we
observed in Section 3.2, too many members or large deposit/loan rates make the above inequality
violated.

Now, let us move onto the other constraint which bounds the mean squared deviation of the
discounted extra profits:

n

2
' 150 )
2|00 =5 2] <M ™
i=1 =1

for some fixed positive real numbét. The left side of the inequality is a quadratic function of
r, which we write asa,r? + 2b,r + ¢, with positivea,. Then, we solve the next maximization
problem:

n

0]
max 2 o)

st.  ar’+2b,r+c, <M. (8)

We note that the objective function is lineariwith a nonnegative slope as argued in the proof of
Theorem 4.1. Therefore, for any fixedsuch that (8) is feasible, i.e., there exists a nonnegative

that satisfies the constraint, the best rate for that order is the largest real number in the intersection
of 7™ and the interval obtained from (8). From this reasoning, the next result easily follows.

Proposition 4.6 The optimal rate for the proble®) plus(7) is given bymax, s { min{r,,q} : r, >
p, and(8) is feasible} whereZ® = [p, g], if nonempty, and,. = a;l( - b, + Vb2 - a,(c, - M)).

Unfortunately, the above optimization problem is formulated as an MIP with nonlinear con-
straints at best. There is in general no fast solution technique known for such problems. Since it is
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not our main concern to find an efficient algorithm for nonlinear MIPs in this work, we leave this
issue as a future consideration. In the numerical example below, we conduct an exhaustive search
to find the optimal order and the optimal rate.

Remark 4.7 Instead of finding for givenrl(i)’s and other parameters, we can consider the problem
of finding loan rates which result in equal discounted extra profits. Tingskedloan rates with a
suitable ordetr then make, r2+2b,r +c, = 0. To find such rates, we begin with the member who

is in then-th position. For that member, the discounted extra profit does not involve any loan rate.
(Recall thate{(r) = 0in Section 2.) With all other parameters fixed, the discounted extra profit
of this member is determined. Then, by equating this with other members’ discounted profits, the
implied loan rates can be calculated. In addition, it is straightforward to check that in order to make
these rates greater than or equal to the deposit rate, which is one of our assumptions, the rates
andr should satisfy the following condition:

r{#}i_l+l+%—k}zl, k=1,...,n-1
Some examples are presented in Figure 14 which shows implied loan rates for members in a
ROSCA withn = 10. Note that there is no implied loan rate for the member inrthie position.

The figure shows that implied loan rates are affected by therratss r approaches the lower
bound, the implied loan rates decrease in member position, while they increase in positi@isas
bigger. Hence, for a small and suitalblet seems possible to have an order that achieves fairness
and increasing discounted extra profits at the same time as long as loan rates are appropriately set.
But, asr increases, such orders are reversed as implied from numerical examples, suggesting the
existence of a trade-off between efficient orders and fair orders.

Before we end this subsection, we compare the solutions of optimization problems discussed
so far. In Figure 15, we show the percentage values of optimal solutions of (5), (5) plus (6), and (5)
plus (7) with respect to the optimal value of (1), which is solved using the commercial optimization
software CPLEX via the above MIP formulation. We observe that at least in this example the first
two subproblems achieve optimal values that are quite close to the optimum of the original problem
while those of the subproblem with fairness consideration decrease as the deposit rate increases.

4.3 Defaultable case

For the rest of this section, we discuss the optimal design of a ROSCA incorporating default risk
as done in Section 3. We assume the constant hazard rate model based on the exponential failure
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distribution with the hazard rate < log{(1 + r"”)/(1+ r)}. Then, similarly as in Section 3.3 and
4.1, we have the following optimization problem:

(9)

whereZ® is the set of admissible rates for a defaultable ROSCA with homogeneous members that
have deposit ratey and loan rate(®, 7, (r) == TP (r)/(1 + rg), TP (1) := £, IO () - Q. and

—Dy(1+rg)<t, if k> t;

d(r) := .
’ M(r) — Dy — 2V(r), otherwise

We note that (9) is a defaultable version of (5). The more general case can be handled using an
MIP formulation as done in Section 4.1. Hence, we rather focus on some analytical results related
to (9).

Theorem 4.8 Suppose that9) is feasible. Then, the optimality for the problem is achieved at the
right endpoint off ™ with an optimal ordewr(i) =n+1—ifori=1,...,n.

Intuitively, one expects that the optimal value of (9) decreases as the hazatith@aeases, and
this is numerically verified in Figure 16. This happens because the feasible region becomes smaller
in 1. See Figure 10. As for Pareto optimality, a reasonable alternative measure of optimality, a
result similar to Proposition 4.3 can be shown using the same line of arguments. Hence, rather
than repeating the same idea, we provide Figure 17 which compares the efficiencies between the
orders in the benchmark case and the defaultable case. It is easy to see that the optimal values are
smaller in the defaultable case as the objective function decreagas ihe feasible region. More
interestingly, the efficiencies as well are smaller in the defaultable case although the percentage
depends on a set of parameters.

5. Concluding Remarks

In this paper, we studied the optimal design of one well-known informal microfinance system,
rotating savings and credit association or ROSCA. By considering banking transactions which
result in the same cash inflows as a ROSCA, we defined a discounted extra profit that an investor
can earn by participating in the system and we formulated the design problem as optimization
problems.
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When members are homogeneous, we found a complete solution to the main problem with the
feasibility condition and the optimal rate. One notable finding is that, as the interest rate margin
becomes not favorable, a ROSCA can contribute to the wealth of each member in the system.
Also, the rate and the number of participants are affected by the banking deposit and loan rates.
To further study practical implications of a ROSCA, we studied the issues of delayed investment
opportunities and fairness. These essentially add constraints to the original formulation which can
be regarded as partial answers to those issues. For the former, we added a condition of increasing
discounted extra profits in member position as a compensation for opportunity costs. For the latter,
a constraint such that the sum of squared deviation of each extra profit from the average is bounded
by a fixed value is considered in order to achieve a fair distribution of the total extra profit from
the system. For the defaultable case, we found a sufficient condition that makes a ROSCA still
attractive to its members. Such a condition is satisfied when the interest rate margin is sufficiently
large and the hazard rate is below some bound which depends on the deposit rate and the loan rate.

A similar analysis is done for the case of heterogeneous members, which is more realistic
because loan rates can be different according to credit ratings of customers. Then, we showed that it
is possible to formulate the original problem in the form of mixed integer programming which can
be solved quite fast by any of the commercial optimization packages. We next presented a related
suboptimal but still realistic problem, and found the optimal order of members and the optimal rate.
The main finding is that the optimal value is achieved when members with higher loan rates are in
earlier positions, that is, receiving the pot earlier. This way, the system is optimized in terms of the
total extra profits, however, other practical issues such as fairness may require suboptimal orders.
As in the case of homogeneous members, we considered two additional issues and found that in the
case of fairness, the optimal order tends to be reversed if the im®ufficiently large. A partial
solution to the investment opportunity costs is also suggested, which parallels the homogeneous
case. For both cases, two additional constraints make a system more attractive to members, but
from the viewpoint of maximizing the total extra profit, these constraints yield lower performances
of a ROSCA. The analysis for the defaultable case is also carried out for heterogeneous members. It
turns out that even though there is a default risk in a ROSCA, consistent results with the benchmark
case are obtained as long as the hazard rate is small enough.

To sum up, we addressed some of the issues that have not been fully answered in the ROSCA
literature, among which the system design together with the possible heterogeneity of members is
the main theme. The resulting optimal design could help establish ROSCAs as effective funding
sources for small and medium-sized businesses especially in developing economies. It has been
noted in the literature that such microfinance services play an important role in building sustainable
enterprises. The design maximizes their extra profits and it could lower their costs of capital so
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that entrepreneurs can avoid paying very high rates of interest to start businesses, sustain their
cash flow management and foster their recapitalization. Additionally, we addressed the issues of
increasing returns and fairness and incorporated default risks of a ROSCA by considering a hazard
rate model. There are two relevant topics that can be investigated in future research. One is an
empirical research of ROSCAs from the perspective of the optimal design we proposed in this
paper. The other is a thorough study of bidding ROSCAs which are also quite a popular form of
microfinance services observed in many countries around the globe.
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Appendix: Proofs

Proof of Lemma 3.1 Firstly, it can be easily checked thifl) < 0, f(n) > 0, andf’(k) > O for all

k because )
(1+r1)log(1+r) : .
F) = n+%, if r, > 0;
n, ifrp=0
This observation implies thd{-) is strictly increasing. Hencd(-) has exactly one rodg, in (1, n).

The rest of the proof is about the increasing propertyh(©f in {1,---,[ko — 17} and{| ko +
1],---,n}. It is enough to check for ak in two sets abovef(k + 1)g(k) — f(K)g(k + 1) > O.
Letl = 1/(1+r) andd = 1/(1 + rq). Rewriting the above inequality, we need to check for all
k=1, ,[k—11-1,

n-k-1 n-k-1 k
(=K 1"* 4+ n— Ij+(k Zu]d— 1+|“kz (10)

j=1 j=1 j=0

We claim that for allx € [0, 1] and for alln > k,

% 1 oy oyl
p(xkn) = (n-KxX"®+n+ i il 2(1 _XX)XkX > 0.

Letp(x) = (1 - X)Xy (%, k, K). Then,p’'(X) = =k — 1+ k(k + 1)x** — (k? — 1)xX. Sincep’(1) = 0 and
©’(") is increasing on [0,1] as easily checked by looking’gtwe havep’(x) < 0 for all x € [0, 1].
Therefore,p(-) is decreasing on [0,1] witlp(1) = O, and as a result, we ge(x) > 0 for all
x € [0,1],i.e.,¥(x,k K) > 0.

As an induction step, let us assume thét, k, k + m) > 0 for some nonnegative value. One
can check that
(XK K+ m+ 1) = (X K k+m) + n(x),
wheren(x) = (m+ 2)x™! — (m+ 1)x™ + 1. Sincen’(X) = (Mm+ X" {(m+2)x—m} = 0, we
know thatn has a minimum value at/(m + 2) in [0, 1] andn(m/(m+ 2)) > 0. This implies that

n(x) > Ofor all x € [0, 1]. Hencey(x, k,k+ m+ 1) > Ofor all x € [0, 1]. Thus, the induction step
is complete and we have proved tiggk, k, n) > O for all x € [0, 1] and for alln > k.

The first step is to prove the inequality (10) on the first set. Ch&osdl,--- ,[kg— 1] —
Recall thatf (k) < f(k+1) <Oforallk=1,---,[ky—1]1-1, andf(k+1) <0 impliesz’j‘;'{‘1 1> k.
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Then,
n—-k-1 . n—-k-1 _ k '
Left hand side of (10} (n—K)I"™* +n- | +[k— |J)|—k_(1+|n—k)2|—j

=y(l,k n)

Sincel € [0, 1], the inequality (10) holds.

The next step is to prove thatk) < h(k + 1) for all k = [ko + 1],--- ,n — 1. Recall that
f(k+1)> f(k) > Oforallk =k + 1],---,n— 1. Rewriting the inequality, it is enough to show
that forallk = |[ko + 1J,--- ,n—1,

k-1 ' n-k-1 ' k-1 . n-k _
[n—k—Zd‘J]I”‘k+n— LEDNE +[k—1—2|’)d"‘20. (11)

j=0 =1

Sincek—1- 351l > 0andk - 37511 > 0, if n—k— X5 d™J > 0, there is nothing to prove.

dj]d‘k

Sinced € [0, 1], the proof is nowdone. |

Now, we assume that— k — ngé di < 0. Then,

k-1 n-k-1
Lefthandsideof(ll)z{n—k—Zd‘j]d”‘k+n Z Zdl+[k 1-
j=0 j=1

= y(d, k, n)

?T

n—

N
iy

j

Proof of Theorem 3.2 First, assume thatis admissible. Then, by definitiorf(K)r + g(k) > 0
fork = 1,---,n. Sincef(:) is an increasing function ark} is the only root off(-), f(k) < O
fork=1,---,[kg— 1] and f(k) > Ofor k = |kg + 11,--- ,n. Therefore, we easily see that, for
ki > ko + 1] andk;, < [ky — 17, we have

hke) < 1 < h(ko).

Hence,Z is nonempty and is in the interval.

Now, we prove the converse, i.e., any elemerf is admissible. Choose amye 7. This leads
to f(Kr+g(k) > Oforallk e {1,..., [ko — 17, Lko + 11,..., n}. If ky is not an integer, then we obtain
the desired result becauBg(r) > 0 holds for everyk = 1,. .., n. If ky is an integer, therii(ko) =
But, if the inequalityg(ky) > O is true, then we still havél(r) > Oforallk = 1,...,n. We claim
that indeedy(ko) is nonnegative wheky is an integer.
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In the proof of Lemma 3.1, we show that
h(k) < h(k + 1)

fork = 1,...,[ks — 1] — 1. The inequality remains true as long 8& + 1) < 0 even wherk is

not an integer. (The proof above still applies to non-intdge) Of course, here, we consider
f() as a function defined oR, by completing summations. Then, for a non-integewe get
h(a) <h(a+1)<--- <h(k) <h(k+1)wherea=k- k] € (0,1). Itis easy to check that(1) < 0
andg(1l) =n-1- Z?;}(1+ r)~’ > 0. The same inequalities still hold for any numbe(@n1). This
makesh(a) > 0 and thus we geg(k+ 1) > 0 because it is assumed thigk + 1) < 0. Consequently

by the continuity ofgy(-), we haveg(ky) > 0. Thereforey becomes an admissible rate regardless of
whetherkg is an integer or not.

For the last statement, we see that the objective function in (1) is simifly; f(K)(1+rg)™)r +
Sk 9(K) (L + rg)7. Eachf(k) is increasing in. Then, we observe that

1S (K k-1 5/ o1\ o1\
ﬁ - (1+rd)k B ;{(1+rd)k_z(l+r|) (1+I’d)}

n k-1 n-k 1 j+k
> Z{(1+rd)k_jz;(1+rd) }
S ) -0

=k+1

where we used, > ry. The double summation on the last line is equal to the first term on that line
after we interchange the order of summations. Hence, the objective function (1) is a linear function
with nonnegative slope, achieving its maximum at the right endpai(it)/ f (1) = h(1). |

Proof of Corollary 3.3 LetT :=rq = 1. If T = 0, theng(k) = 0 for all k and thudIy(r) = f(K)r.
Also, h(1) = h(n) = 0, which results inf = {r/2} = {0}. If n = 2, then it is simple to check that
h(1) = h(2) =7/2,s01 = {r/2}.

Assume thaf > 0andn > 2. Since(1+T)" > R:= 1+Th+72n(n—1)/2+73n(n- 1)(n - 2)/6,

@_@_}{(1+?}”—1—?_ F(n-1) }
f(1) f(n) n T(n-1) 1-1+n@a+n™

>}{R—1—T_ T(n-1) }
“nl|Th-1) 1-(A+7NR1?
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_ ?(n-2)
36+ 18 + 6r2n(n — 2)

{3+ 67 +7°n(n-2)} > 0.
This means thatg(n)/f(n) > —g(1)/ f (1), which implies thatl is empty |
Proof of Proposition 3.5 We first note that

g(k+ 1) - (1 +rg)a(k)

—(L 41+ @ +1) "9 —ryg(K)

n-k
= —(Lra+ @L+n) Y —rgn+ L 4rg) - 14rg Y (1+1)
=1

n-k
= (L+n) ™R _1-r4 [n - Z(l + r|)‘j].
=1

This expression becomesgk whenr, = 0. Thus,A4(K) is strictly negative. Similarly for, > 0,
we have strictly negativag(k)’s for all k. Consequently, a nonnegative ratsatisfies (3) if and
only if A¢(k) > Ofor all k.

Now, it remains to check(k + 1) > (1 + rq) f(k) for all k. If r, = O, thenryq = 0 and thus the
inequality to check becomegk + 1) > f(K). Sincef(-) is strictly increasing withf’(-) = 2n, this
inequality is trivial. Let us assume > 0. In a straightforward manner, we have

fk+1)— (L+rgf(k) >0

n-k-1 1 i n-k 1 j
oS e S
=1 j=1

K+l n—k-1 1 j 1 n—k-1 1 j 1
RN (e Bl o)
1+rd = 1+r| 1+rd = 1+r| 1+r|

1+,

n-k-1 1 i
& (@+n)(k+l-(k=-1)A+rg))>1-rq) Y ( ) .
j=0

The remaining steps are obvious and thus omitted.

The second statement is straightforward to prove, using the arguments in the proof of Theo-
rem 3.2. Hence, we leave the details to the reader |

Proof of Lemma 3.8 Since f_(l) <0, f_(n) > 0, and f_(-) Is continuous, there exists at least one
root in the interval1, n). Assume by contradiction that there are two or more roots in the interval
(1,n). Then, there exists in (1, n) such thatf(c) = 0 and f’(c) < 0. However, iff(c) = O for
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somec, thenf'(c) > 0 because’(k) = —Af(k) + ne &V {1+ (1 +r)*"log(1+ r)/n}if r > O,

(k) = —Af(K) + 2ne®&D if r; = 0. Hence,f(-) has exactly one rodg in (1, n). The rest of the
-1

proof is the same with the proof of Lemma 3.1 by replaaingith {eﬂ(l + rd)} . |

Proof of Theorem 4.1 The first part of the proof computes the optimal rate and the second part

finds an optimal order. For notational convenience, we ifér) as fO(K)r + g”(k). Note that
the objective function of (5) is

i FO(er(i)) Z g (o (i)
(1 +r1g)7® (1+rg)e®
Then, as in the proof of Theorem 3.2, we uge r in the following computations:
EZ”: f@ ) (K) _ zn: k—1 nz_li 1 P
n k=1 (1 + rd)k B 1 (1 + rd)k = 1+ I,.I((r’l(k)) 1+rg
N k=1 T\
;{(1+rd)k_jz(l+rd) }
n
- 2 (1+rd)k Z Z (1+rd)

=k+1

\%

n

) ;( +rd)k Z(1+rd)': |

Hence, the objective function has a nonnegative slope, thus it is maximized at the right@Hd of

As for an optimal order, we first fin andr, and leta = (1 + rgq)"/(1 + nr). For the rest of
this proof, we writes, for o~*(K) for notational simplicity. (Ands, for (c*)*(k), and so on.) Our
objective is to show that*(i) = n+ 1 -1, or equivalentlys; = n+ 1 - kis optimal. Recall that

o) (29 M) - D = 42N
;‘ﬂ”"’(r)_zﬂs‘(r) Z (L + o) ;(nrd)k'

Since the first summation on the right hand is independeq‘f)tst it is enough to show that the
second summation is minimized wheg = n+ 1 — k. In other words, we prove that for any
permutatiors,

n Q(kn+l—k)(r) n 2211 |(r)
“; L+rf Z L+ rg)ma

ACCEPTED MANUSCRIPT
35



ACCEPTED MANUSCRIPT

Z (1+rg) { ( 1 )i‘l}

= 1+rY

)5
(SK) 1+ rI(S«) @ = (L+rgk

For a proof, we use an induction. Suppose 2. Then, there are only two possible orders, and
we observe that

2

Z U I‘)(r) 1+rg _ Ll+rg Z 28(r)
L+raf 1+ r(z) 1+r® (L+rg)k

wheres, = k. We suppose that the above inequality holds for umte 1. Letn = m. For any
given permutatiors, consider another permutatishsuch that

For all otherk, sc = s.. If s; = m, thens' = s. By construction, we note that is a bijection from
{2,...,mto{1,...,m—1}. We then proceed as follows. Since the statement holds fom - 1,

L+ro)~ [,

Sl (2]

S (1+rd)'1 @rrg™ (1 )
{1 ERLNESNE

(1+rd)m- L[t ™ @ rgm ()

25 ) 14 * T 1@

O (L) 1

N 25 () 1- '

1+ rl(gk)

The above reasoning tells us thasif= s, then we are done, andsf # s, then it is enough to
show the next inequality:

—1 ) m-|
(L™ |, [ 1 ]m PECRaR el P
) 1o r® " 141
@™o (1 YT e[ (1 )T
B ri ar® T ) B 141 '
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Using the relationshig, = p = S; ands; = m = g, this is simply

(1+rg)™? 1 V" @™ 1\

m T ] (T e T ®

| + r 1+,
C@ergm o (1 VT @™ (1 YT
B rP 1+ r{m 1+rM '

But, then this is nothing but to show

w1 ) Y1)
(1+rq) J{g[lu(m]_;(m]}

1 me1 1 I m-1 1 i
< (L+rg)™ {Z[l+r(p)] _Z[rrf”‘)J}’

i=1 | i=1

which is obvious from the conditiod < rq < r” < r™. The proof iscomplete. u

Proof of Proposition 4.3 Let us set

n—

k
, : - r 1+nr 1+nr

A =20 1) -200)=C+ d — 4 .
k k+1 k (1 + rd)k+l = (1+ rl(l))J (1+ rd)k+1(1+ rl(l))n—k

where
= Piea() — Braa  Mfr) — D
(1 + rd)k+1 (1 + rd)k ’
Then,A? decreases inbecause™ < r® < ... < 1. Thereforemin, A™(r) > 0'is enough to
guarantee thamin, A"(r) > Oforalli = 1,...,n— 1. Similarly, max A"(r) < 0 implies that

max A(r) < 0for all i's.

Suppose thamine A™(r) > 0, i.e., z\"(r) is strictly increasing irk. When the current order
is changed, there should be at least one membeii, s@yo is moved from a later position to an
earlier position. Sinceﬂ)(r) is also strictly increasing ik, this member is worse off by a new
order. Therefore, every order is Pareto optimal. In a similar fashion, wiamAf})(r) < O0andthe
current order is changed, then there exists a member whose profit is reduced. Hence, every order
is Pareto optimal in this case all. |

Proof of Theorem 4.8 The first part is similar to the proof of Theorem 4.1, utilizing the inequality
e'(1+rg) < 1+r,. For the second part, we first fixandr, letg = {e'(1 + rq)}"/(1 + nr), and write
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s for o71(k) for notational simplicity. (Ands, for (c*)7*(k), and so on.) Our objective is to show
thato*(i) = n+ 1 -1, or equivalentlys; = n+ 1 - kis optimal. Recall that

) B e e [ - DY S D o e™(r)
iZ]To—(I)(r) Z Sk (r) = ; {e/’(1+ rd)}k Z (1 + rd)t - {e’l(l—+ rd)}k'

Since the first summation on the right hand is independen‘f)tst it is enough to show that the
second summation is minimized whgn= n+ 1 — k. Fix any permutatiors. Then, we get

n B(I’Hl k)(r) n 85:3_1 I(r)
F Z e@rrgr - P .21: (e(L + rg)jni

%\ (e (1 + rg)) 1 )7
Z (i) 1- )
= r 1+,

J e 1_[ 1 )”‘k g3 W0
r{%) 1+ {e!(L+ra)}

k=1 k=1

For the proof of the inequality, we adopt the method used in the proof of Theorem 4 & (ith )
instead ofl + rq. Then, the result folls. [ |
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M, () =n+ (k—1nr

14+nr 1+nr 1+nr 1+nr

Figure 1: Cash flow diagram from a ROSCA of membierthek-th position.
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14+nr 1+nr 1+nr 1+nr

Figure 2: Cash flow diagram from banking transactions of memioethe k-th position.

ACCEPTED MANUSCRIPT
40



ACCEPTED MANUSCRIPT

Figure 3: Graph oh(-) with respect to member positionj = 0.3%, r, = 0.5%, andn = 10.
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Figure 4: Length off as a function of the de-
posit rate where fixing the interest rate margin
at three different values when there are 10 mem-

bers.
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Figure 5: Length off as a function of the in-
terest rate margin with the deposit rate at 0.3%,
0.5%, and 0.7% when there are 10 members.
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members in the system.
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Figure 7: The maximal number of members that
produces a feasible solution to (1) as a function

of the deposit rate.
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Figure 8: minZ, maxZ, andr* in terms ofr,
whenry = 0.3% andn = 10.
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Figure 9: minZ, maxZ, andr* in terms ofry
whenr, = 0.6% andn = 10.
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Figure 10:|1:| as a function oft with three dif-
ferentr,, andn = 10, ry = 0.3%.
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Figure 11:|7] as a function of, — rq with three
differentry, andn = 10, 1 = 0.3%
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Figure 12: Efficiencies of orders when= 5,
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Figure 13: Efficiencies of orders when= 5,
r = 04%, rqy = 04%, andr’’s are equally

spaced between 0.8% and 1.0%.
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Figure 14: Implied loan rates for members on
positions 1 to 9: the number of members is 10,
the admissible rates are 0.15204%, 0.152055%,
and 0.15207%, and the deposit ratg (s 0.3%.
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Figure 15: Ratios of maximal values of (5),
(5)+(6), and (5)+(7) to that of (1):n = 5,
M = 0.013 and ther" are 0.50%, 0.55%,
0.60%, 0.65%, and 0.70%.
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Figure 16: Optimal values of (9) as a function
of A whenn = 10 andr’s are equally spaced
between 0.6% and 1.05% with at 0.1%, 0.2%
and 0.3%.
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Figure 17: Efficiencies of orders when= 5,

r = 04%, rqy = 04%, andr"’s are equally
spaced between 0.8% and 1.0% witlat 0%
and 0.3%.
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