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Abstract

Rotating savings and credit association (ROSCA) is a well-known microfinance association

widely used in many countries around the world with long histories. By considering extra

profits that such a system can provide when compared to banking transactions, we develop

optimization problems to achieve an optimal design of a ROSCA. We find that ROSCAs might

attract investors when deposit and loan rates from formal banking systems are not favorable.

Furthermore, optimal rates and optimal orders to maximize system outputs are reported.
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1. Introduction

1.1 Motivation

Modern banking and financial systems have evolved very fast, however it is not so long ago that

some sorts of informal financing operations, e.g. via friends and relatives, were very common.

Even in today’s world, such informal systems are not extinct. When formal banking systems fail

to provide easy-to-access loans and sufficient returns on deposits or when there are no fully mature

banking systems as typically seen in under-developed economies, private investors and small and

medium-sized enterprises (SMEs) might seek alternatives. For example, there could be loans with

less stringent conditions and deposits with more returns than in formal banking systems. One very

well-known example of such alternatives ismicrofinance, which has sprung up to meet this need in

many local communities around the world. It often refers to a formal or informal financial service

that is to enhance the financial sustainability of the investors who lack access to formal banking

services.

Savings and loans are the two main services that microfinance can provide, and it also delivers

other services such as money transfers and insurance, depending on service providers. Because

such services are similar to the ones in formal banking systems and their analysis are well estab-

lished in the existing research, we focus on one of the popular group-based models which incorpo-

rates savings and loans to satisfy participants’ common interest, the so calledrotating savings and

credit association(ROSCA). Armend́ariz and Morduch [2005] explained ROSCA as one of the

roots of modern microfinance institutions. The basic framework of any ROSCA is as follows. A

certain number of participants agree to make a regular meeting system with a fixed maturity. And

at every meeting, each member puts in a fixed amount of money and the collected pot is then given

to one of the members who has not yet received a pot. At the maturity of a ROSCA, i.e., when

each member has received his/her pot exactly once, they either dissolve or restart the system.

Many SMEs use this system for business purposes, for example, to make a lump sum of money

before the full amount is accumulated, to avoid transaction costs or taxes, and so on. Buckley

[1997] mentioned that in Kenya, Malawi, and Ghana, ROSCA is a common source of enterprise

finance and offers SMEs a self-sufficient, voluntary-based organizational framework to save and

borrow money. Especially in Ghana, according to Owusu et al. [2013], most of the traders who

lack access to funding consider ROSCA as the easiest and readily available alternative to raise

funds to support their business operations. Similar cases can also be found in Asia. In Taiwan,

for example, Gelinas [1998] stated, “Until 1970, the banks for small and medium-sized businesses
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in Taiwan were rotating savings and credit societies, clearly part of the informal sector. Recently

integrated into the formal sector, these community-based banks still operate withhehuifunds now

totalling $3.8 billion.”

In addition to being an effective funding source, ROSCA can be approached from the per-

spective of sustainable enterprises. As Anane et al. [2013] mentioned, microfinance products and

services have economic impacts on SMEs: absorbing shocks and exposure, improving produc-

tivity, raising income or increasing savings. ROSCAs are no exception to this point. The paper

by Khan and Lightfoot [2011] conducted a qualitative research on the sustainability of economic

players supported by ROSCAs. To further highlight this point, Mbizi and Gwangwava [2013] in-

vestigated a similar research question in Zimbabwe. According to their research, ROSCAs help

to smoothen business financial cycles, to manage cash flows, and to facilitate recapitalization of

enterprises by pooling financial resources to one member per time period, thereby enhancing the

operational sustainability of local enterprises.

Furthermore, it is intuitively appealing that ROSCAs play an important role in developing

countries because they can replace some capital market functions [Scholten, 2000]. However, even

in countries with big credit markets, some forms of ROSCAs still exist. For example, ROSCAs of

the ordered type (hereafter, ordered ROSCA) in which there is a pre-determined order of recipients

are very popular in South Korea. (See Scholten [2000] for another example in Germany and

Austria.) We aim to better understand this ordered type ROSCA which coexists with mature formal

financing systems. In particular, we are interested in the issue of ROSCA design mentioned in

Besley et al. [1993] such as the rate of a ROSCA and the order of recipients. The central question

we attempt to address is when a ROSCA can be beneficial compared to formal banking systems

and we do so in both of the cases where the credit ratings of participating members are the same or

different. To achieve these goals, we adopt the approach of replication strategies that are typically

used in asset pricing theory. By comparing cash flows from a ROSCA with those from banking

transactions, we explicitly define extra payoffs to ROSCA participants.

Our contributions to the literature are as follows. First, we analyze the ordered ROSCA which

is an important type of ROSCA, but has received relatively less attention. And second, we provide

prescriptions about when a ROSCA is actually good, what rate should be used, and how many

members can be accommodated in the system, etc. Even though our analysis is on the ordered

ROSCA, it is worth mentioning that theex postanalysis of a random ROSCA is the same as the

analysis of the ordered one. This is because the contributions of a member in the random case

can be transformed into those in the ordered case, by selecting a suitable rate once the time of

receiving a pot is realized. Therefore, our analysis can be useful for understanding of random
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ROSCAs. Lastly, we take a more theoretical approach to the analysis of a famous form of informal

microfinance system whereas the existing research in the Operations Research community by, for

example, Gutíerrez-Nieto et al. [2007], Gutiérrez-Nieto et al. [2009], Amersdorffer et al. [2014],

and Piot-Lepetit and Nzongang [2014] is based on statistical techniques such as data envelopment

analysis. Thus, we hope that this work sheds some light on the design issue of financial products

at microfinance institutions.

1.2 Background and related works

Microfinance operates both formally and informally, and so do ROSCAs. Formal ROSCAs run

by commercial banks in Argentina, Ghana, and Mexico, for example, are explained in Schreiner

[2000] and Vonderlack and Schreiner [2002]. They have long maturities, many members, and

big pots. In this model, a bank pays interest to members who are yet to get the pot and receives

interest from members who got the pot in the past. Also, the sustainability of a system is now

the responsibility of banks (hence, fees are charged) and such products are under government

regulations. Other examples include building and loan associations in Germany and Austria called

Bausparkassenthat account for 15% of loans in Germany, 45% of loans in Austria, and more

than 20% of household deposits, according to Scholten [2000]. This model was adopted by other

European countries such as Hungary and Poland in 1990’s. On the other hand, informal ROSCAs

do not have any guarantee of insurance in the event of a member’s default, so they have shorter

maturities, less members, and smaller pots than formal ROSCAs. In addition, interests are paid and

received according to the rules made by members. Informal ROSCAs are more widely observed

around the globe in various forms. Instead of listing all such practices, we briefly mention some

notable examples from Asian and African countries where ROSCAs have long histories and they

are still actively in use.

• China and Taiwan: China and Taiwan has a common history of 3,000 years of ROSCAs,

calledhehui. As reported in Li and Hsu [2009], there are several types ofhehui. For exam-

ple, lunhui is the ordered ROSCA,yaohuiselects a recipient each time randomly (random

ROSCA), andbiaohuihas a secret bidding procedure to choose a recipient at each meeting

(bidding ROSCA). Especially in Taiwan, according to Levenson and Besley [1996], random

and bidding ROSCAs are popular as a savings device and account for a large part of the in-

formal financial sector, at least 20.5% and it might be as high as 85% according to another

estimate.
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• Japan: Dekle and Hamada [2000] studied ROSCAs in Japan, calledkō, and they are mostly

random and bidding types. Thiskō has been used for about 800 years. In the early 20th cen-

tury, thekō was flourishing but the implicit rate of return was often so unfair that the Japanese

Ministry of Finance provided a formula for the rate. After World War II, mostkōs became so

large that they formed regional mutual banks, but, finally converted into commercial banks.

Nevertheless, small, informalkōs still operate in Japan.

• Korea: Campbell and Ahn [1962] describedkye, the ROSCA in Korea, which is about 2,000

years old and yet quite popular today. They are mostly ordered and bidding types. Both

forms usually contain interests which are accrued on regular contributions of a member of

kyeafter she receives a pot.

• Ghana and other West African countries: According to Bortei-Doku and Aryeetey [1996],

rotatingsusuclubs, the ROSCAs in Ghana have a high-profile due to the lack of proximity to

banks in general, and many of them are founded by a need to overcome frequent shortages of

cash in their business activities and in crisis situations. Bouman [1995] summarized ROSCAs

in other West African countries such as Congo, Liberia, Ivory Coast, Togo, Nigeria, and

Cameroon, where 50 to 95 percent of adults participate in ROSCAs.

• Kenya: Kimuyu [1999] conducted a survey in the Kenyan community which showed that

45% of those questioned were participating in ROSCAs. According to Anderson and Baland

[2002] and Anderson et al. [2009], most of ROSCAs in Kenya are ordered ones, and only a

few of them are random ROSCAs. They could not find any bidding ROSCAs in their surveys.

• South Africa: According to Burman and Lembete [1996], ROSCAs are known by various

names in South Africa such asstokvel, gooi-gooi, umgalelo, mahodisana, andumshayel-

wano. In 1988, the National Stokvel Association of South Africa was established to claim

the rights ofstokvelmembers and promote recognition ofstokvelsby formal financial insti-

tutions as a source of informal credit.

In the large ROSCA literature, one key work was that of Besley et al. [1993] who provided

an economic analysis of ROSCA, focusing on its economic role and performance. Their work

was motivated by ROSCA practices observed in immigrants groups in the United States as well

as in developing countries such as India. The model assumes that members of a ROSCA do not

have an access to credit markets. The members have the objective of increasing their lifetime

utilities dependent on an indivisible durable consumption good (a participant receives a constant

flow of services for the rest of the lifetime upon purchase). Under some additional assumptions

on utilities and preferences, they showed that ROSCAs (random or bidding) improve members’

6
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

lifetime expected utilities compared to the case where individuals make savings by themselves.

In addition to this result, discussed are the effect of heterogenous members, i.e., with different

preferences, and the sustainability of ROSCA due to its informal nature.

More qualitative and quantitative investigations by many researchers followed. Bouman [1995]

compared ROSCAs and Accumulating Savings and Credit Associations (ASCRAs) in which the

savings are not instantly redistributed but allowed to accumulate to make loans. The author also

proposed a hybrid of ROSCA and ASCRA where at each meeting, the highest bid is not redis-

tributed but utilized as a loan fund. In the literature, the performances of ordered, random, and

bidding types are often compared. To mention a few, Besley et al. [1994] studied allocations

achieved by random and bidding types as well as those obtained by a credit market. A similar

comparison was done by Kovsted and Lyk-Jensen [1999]. But in the latter, the authors developed a

game theoretic model and assumed that members of a ROSCA can raise a fund outside the system

at positive costs. Anderson et al. [2009] found that enforcement problems on defecting members

are more severe in random ROSCAs than in ordered ones, and that the system is not sustainable

without social sanctions regardless of whether it is random or ordered. Klonner [2003], on the other

hand, extended existing models to incorporate risk-averse agents who might suffer from stochastic

income shocks. Also, there is a model developed by Ambec and Treich [2007] which explains the

existence of ROSCAs from the viewpoint of self-control problems.

In terms of finding conditions that would make ROSCAs more appealing than banks, our work

shares the same spirit with van den Brink and Chavas [1997]. The authors looked at profits from

ordered ROSCAs and from interest-bearing savings accounts but without any discounting nor in-

terest compounding. Our research has four different aspects from their work. First, we utilize

savings and loans together to replicate ROSCAs’ cash flows, which helps us find profitable con-

ditions of ROSCAs. Second, ROSCAs are found to be still feasible even when later positions

receive more benefits via a quantitative analysis whereas van den Brink and Chavas [1997] noted

that earlier positions are better in general. Third, we provide an answer to an optimal design prob-

lem of an ordered ROSCA with and without homogeneity of participants. Lastly, discounting and

compounding calculations are employed in this paper.

The remainder of the paper is organized as follows. Section 2 introduces the model and formu-

lates an optimization problem to derive an optimal design of a ROSCA. In the section that follows,

we analyze the feasibility condition and solve for an optimal solution when members of the system

are homogeneous in terms of credit ratings. In Section 4, we extend the analysis to the case of

heterogeneous members, and Section 5 concludes. All proofs can be found in the appendix.
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2. The Model

We begin our discussion by describing one form of ordered ROSCAs that is in widespread use.

This informal finance system is assumed to haven members, say member 1 to membern, and

maturityT at which it ceases to function. Throughout the paper, we assume that there are at least

two members to avoid triviality, i.e.,n ≥ 2. In this system, members have regular meetings at

times{T/n,2T/n, ∙ ∙ ∙ ,T}, so the total number of meetings isn. The important components of the

system are itsinterest rater and the order of members according to which exactly one member

is entitled to receive a certain amount of cash at each meeting. We note that this rate determines

returns to each member and it is different from banking deposit or loan rates. In practice, this

rate is determined by an agreement among members before starting the rotation, depending on

domestic economy, economic status of members, etc. Although the determinants of the rate have

not been fully investigated in the literature, it is reported by Yu [2014] that the average interest rate

in ROSCAs was around 0.5%. To be more specific about the system features, for each member,

the amount of cash to put into the system at each time is different depending whether it is before

she receives a pot or it is after. If it is before or at the time of the receipt, then she delivers a base

amount, say 1, and if it is after, then1+ nr. If she is supposed to receive a pot at thek-th meeting,

then the total amount of cash receipt isMk(r) := n+ (k− 1)nr. This makes the total cash inflow to

the system and the cash outflow equal at each meeting time. We provide the cash flow diagram of a

member in thek-th position in Figure 1, where each integeri in circles means thei-th meeting, the

numbers near down arrows are cash outflows, and the number near the up arrow is the cash inflow

at thek-th meeting.

Besides the basic description of the model, we make some additional assumptions. First, we

assume that all members abide by the contract details and do not default on their obligations. This

is not entirely realistic because there were incidents such that one of the members ran away, making

negative returns to members who had not received his/her pots. In this work, however, we focus

on properties and design issues of the system, leaving the task of incorporating such default risk

of a system as a future work. Second, different from the majority of the literature on ROSCAs, we

assume that a mature banking system exists and that all members freely transact with banks. As

it is typical in real world, a bank provides a single deposit raterd, e.g., three months CD rate, but

requires different loan rates depending on the credit rating of each customer, sayr (i)
l for member

i. Throughout the paper, we assume that0 ≤ rd ≤ r (1)
l ≤ ∙ ∙ ∙ ≤ r (n)

l without loss of any generality.

Here, deposit raterd and loan rater (i)
l are the rates for each time period between the meetings. In

all examples we consider in this paper, we take the interval between meetings equal to one month,

andrd andr (i)
l are monthly rates.
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Next, let us consider the following hypothetical banking transactions. Throughout the firstk

meetings, memberi makes a deposit of size1 at each meeting. At thekth meeting, she withdraws

all the savings of which size is denoted byDk and, additionally, takes a loanL(i)
k with rater (i)

l . This

loan is paid back in full by the payment of1+ nr for each of periodsk+ 1 to n. The termnr means

the simple interest of the loan for each period. Based on above assumptions, we observe that

Dk =

k−1∑

j=0

(1+ rd)
j , L

(i)
k (r) =





∑n−k
j=1(1+ nr)/(1+ r (i)

l ) j , if k = 1, ∙ ∙ ∙ ,n− 1;

0, if k = n.

The cash flow diagram is given in Figure 2. Notice that in these transactions the cash outflows

for memberi are exactly the same as in the case of a ROSCA. Hence, the difference between the

total cash inflows of banking transactions and a ROSCA can be understood as the extra profit by

participating in a ROSCA. We write the extra profit of memberi in thek-th position as follows:

Π
(i)
k (r) := Mk(r) −Dk − L

(i)
k (r), i, k = 1, . . . , n.

By looking at this difference, one realizes that the minimal condition for the existence of a

ROSCA is thatΠ(i)
k (r) is nonnegative; otherwise, she would have earned a better return via banking

transactions. Therefore, in the sections that follow, we conduct a feasibility analysis of the system

by considering the conditionΠ(i)
σ(i)(r) ≥ 0 for all i = 1, . . . , n whereσ represents the order of

members, i.e., memberi receives a pot at theσ(i)th meeting. Clearly,σ is a permutation of the set

{1, . . . , n}. Later in the paper, we compare different orders of members in terms of the sum of extra

profits. For this purpose, we need a measure to compare extra profits at different meetings. We

note that if a member makes an additional bank depositπ(i)
k (r) := Π

(i)
k (r)/(1 + rd)k at time0, then

this offsets her extra gain from a ROSCA at thekth meeting. We call this amount a discounted

extra profit of memberi in thek-th position . Hence, we use this as a tool to make comparisons

between orders. One of our main questions, then, is the following optimization problem:

max
σ,r

n∑

i=1

π(i)
σ(i)(r)

s.t. r ≥ 0, π(i)
σ(i)(r) ≥ 0, i = 1, . . . , n

(1)

for given ratesrd and r (i)
l ’s. An optimal solution represents an optimal design of the informal

finance system that guarantees better returns to the members than banking transactions and maxi-

mizes the total extra profits.

Remark 2.1 Let us consider random and ordered ROSCAs having the same interest rater and the
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same number of participantsn for their ex-antecomparison. Then, in a random case, memberi’s

discounted extra profit is one ofn possible values,π(i)
1 (r), π(i)

2 (r), . . . , π(i)
n (r), with probability 1/n

each, whereas the discounted extra profit isπ(i)
σ(i)(r) in an ordered case. The choice between the two

types of ROSCAs might depend on this member’s risk-taking characteristics. For instance, let us

take the power utility functionu(x) = (x(1−ρ) − 1)/(1− ρ). It can be shown that, forρ sufficiently

large (extremely risk averse), the ordered ROSCA gives a higher utility than the random one unless

σ(i) = argminj π
(i)
j (r). On the other hand, in the case of a random ROSCA, the timing of the receipt

of a pot may not necessarily meet the member’s needs, which means a suboptimal use of funds.

Along the same line, we lastly observe that an optimally ordered ROSCA always dominates in the

sense of expected total profits, thanks to the formulation (1).

3. System Feasibility and Profitability

In this section, we assume that the members of a ROSCA arehomogeneousin the sense that their

loan rates are equal. This simplifies the analysis and allows us to avoid unnecessary complications

in delivering our main messages. For the sake of notational convenience, we drop the superscript

(i) from r (i)
l , Π(i)

k , π(i)
k , andL(i)

k . We are then concerned with the feasibility conditionπk(r) ≥ 0

(or equivalently,Πk(r) ≥ 0) for all k = 1, . . . , n in the problem (1). When it is possible to find a

nonnegative real numberr that satisfies the condition, we call it anadmissiblerate.

3.1 Benchmark case

A closer look at the extra profitΠk(r) reveals that it can be expressed by two auxiliary functions

f (∙) andg(∙) whereΠk(r) = f (k)r + g(k) and

f (k) = n


k− 1−

n−k∑

j=1

(1+ rl)
− j


 = n

[

k− 1−
1− (1+ rl)k−n

rl

]

,

g(k) = n−
k−1∑

j=0

(1+ rd)
j −

n−k∑

j=1

(1+ rl)
− j = n−

(1+ rd)k − 1
rd

−
1− (1+ rl)k−n

rl

for k = 1, . . . , n. Often we takeR+ as the domain off (∙) andg(∙), after completing summations.

These two functions are monotone,f (∙) increasing andg(∙) decreasing. The following lemma is

useful throughout this subsection. For a real numberx, dxe andbxc denote the smallest integer that

is not less thanx and the largest one that is not greater thanx, respectively.
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Lemma 3.1 There exists a unique real numberk0 in the interval(1,n) with f (k0) = 0. And ifh(∙)

is a real valued function such thath(k) = −g(k)/ f (k) for all k = 1, . . . , n wheneverf (k) is nonzero,

thenh(∙) is increasing on each of the sets{1, ∙ ∙ ∙ , dk0 − 1e} and{bk0 + 1c, ∙ ∙ ∙ ,n}.

The lemma implies thath(1) = mink=1,∙∙∙ ,dk0−1e h(k), andh(n) = maxk=bk0+1c,∙∙∙ ,n h(k). Now, we

define a set

I := [h(n),h(1)]

if the left end is not greater than the right end. Otherwise,I is set equal to the empty set. In

addition, whenI is not empty, it is a subset ofR+ becausef (n) > 0 andg(n) ≤ 0, which can

be easily checked. Figure 3 illustrates howI is constructed fromh(∙). It clearly showsh(∙) is

increasing up todk0 − 1e and increasing again frombk0 + 1c. In the figure,k0 is located between

5 and 6. As long asI is nonempty, we can visualize the interval as the two dashed lines in the

graph albeit the position ofk0 might be different. This interval plays a crucial role in describing

the following result, which is the first main result of this paper.

Theorem 3.2 The intervalI is the set of all admissible rates. In addition, whenI is nonempty,

the optimality for the problem(1) is achieved atr = h(1).

Albeit simple, the above result completely solves our initial optimization problem (1) at least in

the case of homogeneous members. This solution prescribes one way of utilizing the fact that there

are typically positive interest rate margins, i.e., loan rate minus deposit rate, in a formal banking

system. Indeed, if the interest rate margin is zero, then it is possible to show that there are severe

restrictions on the choice of an admissible rate.

Corollary 3.3 Suppose that the interest rate margin is zero, i.e.,rd = rl . If the rates are zero or if

there are only two members in the ROSCA, then we haveI = {rd/2} = {rl/2}; otherwise,I = ∅.

On the other hand, it is simple to verify that the equivalent statement forI , ∅ is

n−1∑

i=1

(1+ rd)
i ∙

n−1∑

j=1

(
1

1+ rl

) j

≤ (n− 1)2. (2)

Note thatI is a single point set when the equality holds. In addition, the left hand side strictly

increases inrd and strictly decreases inrl. Hence, for each fixedrd (or rl), there is a uniquerl

(or rd) at whichI collapses to a single point. We omit detailed computations because they are

straightforward, but record one consequence as a corollary.
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Corollary 3.4 For each fixedrd, there is a threshold value forrl such thatI has zero length for

the first time, i.e. when the equality holds in(2). A similar statement holds forrl. Consequently, if

the interest rate margin is sufficiently large, then there exists an admissible rate.

The importance of this observation lies in that it provides one possible reason why ROSCAs are

still popular in countries with developed finance systems. In the literature, ROSCAs are usually

described as a method of accumulating cash amounts for purchase of goods in under-developed

economies. Actually, it was discussed by, e.g., Callier [1990] that they will disappear as capital

market integration progresses because lumpy expenditures are possible due to the accessibility to

credits. However, it is not difficult to find out that the informal finance systems are still popular

among citizens in countries with big credit markets, e.g., Japan, South Korea, and Taiwan. Easy

access and no tax can be one reason for such popularity, but the above analysis shows that it is

actually possible to make better returns when the interest rate margins are not favorable. One

related observation is that the threshold is usually formed when the interest rate margin is large

enough. This essentially follows from the difference between the banking rates and the return of

the ROSCA (no compound interests). Hence, having nonzero interest rate margin is not enough to

construct a profitable ROSCA.1

Although it is tempting to conclude that there are more opportunities to exploit if the interest

rate margin increases, the relationship is not that simple because|I| depends onrd or rl as well as

the margin itself. One such example is given in Figures 4 and 5. Figure 4 shows the graphs of

the intervalI as a function ofrd when the interest rate margin is fixed atδ > 0. Figure 5 contains

similar information but graphs are illustrated as a function of the interest rate marginδ with three

different levels ofrd. The former shows that overall|I| tends to increase as the marginδ does so,

but its size changes nonlinearly asrd varies, while the latter illustrates that for each deposit rate,

there is a threshold level for the interest rate margin satisfying|I| = 0 beyond whichI becomes a

nontrivial interval and there are admissible rates.

A more interesting relationship is exhibited in Figure 6. It describes graphically the minimal

interest rate margin (as a function ofrd) above which|I| becomes strictly positive so as to make a

ROSCA profitable. It also shows how those graphs behave as the number of participants increases.

Again, all rates are computed on a monthly basis. Basically, it tells us that we need higher interest

1The World Bank reports the interest rate spread, defined as the interest rate charged by banks on loans to private
sector customers minus the interest rate paid by commercial or similar banks for demand, time, or savings deposits,
in Japan every year, and Google Trends provides search query time series on rotating savings and credit association in
Japan. If this Google Trends result is interpreted as the expression of interests on ROSCAs in Japan, then this gives
an indirect but empirical relationship between the interest rate margin and the demand on ROSCAs. The correlation
between those two time series from 2005 to 2014 is 0.8932.
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rate margins to get a ROSCA system going if there are more members in the system or the deposit

rate gets better. Looking at this latter observation from a different point of view, one realizes that

there should be a certain threshold for the maximal number of members in a ROSCA if all other

model parameters are fixed at constants. In fact, the left end ofI can be shown to diverge to infinity

asn increases while the right end converges torl. This is illustrated in Figure 7. The graph shows

the maximal number of participants that can be accommodated in a given ROSCA as a function of

rd at three different levels ofrl. One can clearly see that a ROSCA can have a larger number of

members when the interest margin becomes larger.

3.2 Additional issues

Let us turn our attention to the original question (1). Even though it is clear that members can ben-

efit from participating in a ROSCA in certain situations, the nonnegativity of extra profits might

not be the only constraint. As mentioned earlier, there exists the possibility of a member reneging

on the ROSCA rules and there are examples in which such incidents caused social concerns, lead-

ing to regulatory problems as well as increased business bankruptcies and corporate debts. Also,

there are some research works on such behaviors and the design of ROSCAs to prevent them. For

instance, Wei and Lijuan [2011] proposed the legal regulation of ROSCAs applying partnership to

those systems. For further issues, we refer the interested reader to Besley et al. [1993] and Handa

and Kirton [1999]. In addition, a member might lose investment opportunities if the timing of the

receipt of a pot is late. Due to these issues of sustainability and opportunity costs, it is plausible

that members in later positions would want additional compensations. Apart from these concerns,

it is also reasonable to imagine that members are also likely to compare their extra profits to each

other. This is a fairness issue which often becomes quite subtle. We argue below that this problem

cannot be resolved completely, but still a partial answer is presented.

Hence, to deal with the first problem at least partially, we impose the following constraint:

πk(r) ≤ πk+1(r), k = 1, . . . , n− 1. (3)

In other words, more extra profits to members who receive pots later. It is easy to see that this

condition is transformed toπk+1(r) − πk(r) = Δ f (k) r + Δg(k) ≥ 0 for all k = 1, . . . , n− 1 where

Δ f (k) :=
f (k+ 1)

(1+ rd)k+1
−

f (k)
(1+ rd)k

, Δg(k) :=
g(k+ 1)

(1+ rd)k+1
−

g(k)
(1+ rd)k

.

Therefore, the optimization problem (1) with the additional constraint (3) becomes an easily im-

plementable linear programming problem. The next result provides a feasibility analysis and a

13
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solution for this question.

Proposition 3.5 There exists a nonnegative rater satisfying(3) if and only if the following condi-

tion holds:

(rl − rd) <
rl(2− (k− 1)rd)
1− (1+ rl)−n+k

, k = 1, . . . , n− 1.

In this case, the feasible region for the problem(1)plus(3) isI′ := I∩
{
r : r ≥ maxk

{
−Δg(k)/Δ f (k)

} }
,

and an optimal solution is obtained at the right endpoint ofI′.

Simple sufficient conditions for (3) can be found. For example, the condition in the proposition

is satisfied if(rl − rd) < rl(2 − (k − 1)rd) for all k, which is equivalent to(n − 2) < 1/rd + 1/rl.

This expression shows the relationship betweenn, rd, andrl to guarantee the increasing returns to

ROSCA members more clearly; too many members or sufficiently large deposit/loan rates make

the inequality invalid. Actually, the parameter values in our numerical examples are small enough

to satisfy (3), but it is numerically verified that the inequality in Proposition 3.5 is violated for

largen, rd, or rl. Hence, a large interest rate margin is not enough to meet the constraint on the

increasing property of discounted extra profits.

As for the second issue of fairness, one easily can see that there is no general functional form

of rater in terms ofrd, rl which yields the same extra profit for all members. This is becauseMk(r)

is linear inr butDk andLk(r) are higher-order polynomials inrd and1/(1 + rl). Instead of such

an extreme case, we consider an approach of imposing a bound on the mean squared deviation of

extra profits:

n∑

k=1

(
πk(r) − π(r)

)2
≤ M (4)

whereπ(r) = n−1 ∑n
k=1 πk(r) andM is some positive real number. The left side of the inequality is a

quadratic function ofr, sayar2 + 2br + c with positivea. The next result parallels Proposition 3.5.

We omit its proof which is almost trivial.

Proposition 3.6 There exists a nonnegative rater satisfying(4) if and only ifM ≥ c−b2/a. In this

case, the feasible region for the problem(1) plus(4) is I′′ := I ∩
{
r : ar2 + 2br + c ≤ M

}
, and an

optimal solution is obtained at the right endpoint ofI′′.

Remark 3.7 The best possibler to achieve fairness in the sense that we explained above, if ad-

missible, is the rater∗ that minimizes the mean squared deviation in (4). Clearly,r∗ = −b/a. Note

thatr∗ is different from the optimal solution in Proposition 3.6. Figures 8 and 9 are two examples

from which we see thatr∗ is located around the middle ofI.

14
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3.3 Defaultable case

In this subsection, we assume that the system can break down due to the default of a member

or some exogenous causes. All other assumptions remain the same as in the benchmark case.

For default probabilities, we adopt the constant hazard rate model which is based on exponential

failure distribution, assuming that defaults happen between the meetings. LetQt = P(t < τ < t+1),

t = 1, . . . , n − 1, denote the probability that a default occurs atτ ∈ (t, t + 1). Whent = n, Qn =

P(τ > n) is the probability of no default. Then, the constant hazard rate leads toQt = e−λt(eλ − 1),

t = 1, . . . , n − 1, andQn = e−λ(n−1). This type of approach has been adopted in other contexts

as well. For example, Banasik et al. [1999] applied survival analysis techniques to study credit

scoring systems.

We consider the same hypothetical banking transactions as in Section 2. The difference be-

tween the benchmark case and the defaultable case occurs whenk > t := bτc, i.e., a ROSCA fails

before the member ink-th position receives the pot. In this case, by ceasing to make deposits at

a bank and withdrawing all the savings atk, we can match the cash outflows in a ROSCA and

banking transactions. However, the cash inflow of a ROSCA is zero while the banking transaction

givesDt(1+ rd)k−t. Hence, the extra inflow is−Dt(1+ rd)k−t.

On the other hand, ifk ≤ t, we note that there is no cash outflow for a ROSCA att + 1, . . . , n,

while the member is obliged to pay bank1 + nr in each period in the banking transactions. This

makes the extra profit in the defaultable case is no less than the extra profitΠk(r) = Mk(r) −

Dk − Lk(r) in the benchmark case. Consequently, for example, the conditionΠk(r) ≥ 0 becomes a

sufficient condition that guarantees the profitability of a ROSCA in this particular situation. Then,

the outflow of the ROSCA is not bigger than that of the banking transaction.

Combining these two separate considerations, we realize that one sufficient condition for the

profitability of a ROSCA in the defaultable case is that the expected extra inflow is nonnegative,

i.e.,

Π̄k(r) :=
n∑

t=1

Πk,t(r) ∙ Qt ≥ 0

where

Πk,t(r) :=





−Dt(1+ rd)k−t, if k > t;

Mk(r) −Dk − Lk(r), otherwise,

for k = 1, . . . , n. We call π̄k(r) := Π̄k(r)/(1 + rd)k the discounted expected extra inflow of the

member in thek-th position . Now, we can proceed similarly as in Section 3.1, the main question
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being the optimization problem

max
r

n∑

k=1

π̄k(r)

s.t. r ≥ 0, π̄k(r) ≥ 0, k = 1, . . . , n

for givenrd, rl, andλ.

The expected extra inflow̄Πk(r) can also be expressed by two auxiliary functionsf̄ (∙) andḡ(∙)

whereΠ̄k(r) = f̄ (k)r + ḡ(k) and

f̄ (k) = ne−λ(k−1)


k− 1−

n−k∑

j=1

(1+ rl)
− j


 ,

ḡ(k) = e−λ(k−1)


n−

k−1∑

j=0

{
eλ(1+ rd)

} j
−

n−k∑

j=1

(1+ rl)
− j


 ,

for k = 1, . . . , n. As before, we complete the summations and useR+ as the domain of̄f (∙) and

ḡ(∙). The next lemma is helpful in deriving the following corollaries which provide consistent

results with Section 3.1 as long as the hazard rate is small enough. For notational simplicity, we

setλ∗ = log {(1+ rl)/(1+ rd)}.

Lemma 3.8 There exists a unique real numberk0 in the interval(1,n) with f̄ (k0) = 0. In addition,

if λ ≤ λ∗ andh̄(∙) is a real valued function such thath̄(k) = −ḡ(k)/ f̄ (k) for all k = 1, . . . , n whenever

f̄ (k) is nonzero, then̄h(∙) is increasing on each of the sets{1, ∙ ∙ ∙ , dk0 − 1e} and{bk0 + 1c, ∙ ∙ ∙ ,n}.

A similar implication as in Section 3.1 can be made from this lemma. Let us consider, for any

λ in the interval[0, λ∗] , we seth̄(1) = mink=1,∙∙∙ ,dk0−1e h̄(k), andh̄(n) = maxk=bk0+1c,∙∙∙ ,n h̄(k). We then

define an interval

Ī :=
[
h̄(n), h̄(1)

]

if h̄(n) ≤ h̄(1); Ī = ∅ otherwise. It can be easily checked thatĪ ⊂ R+ becausēh(n) ≥ 0.

Additionally, one can verify thatλ > λ∗ impliesĪ = ∅. This means that the sufficient condition for

the profitability of a ROSCA does not hold if the default rate is large, which concurs with intuition.

Consequently, we shall impose this constraint for the rest of our analysis. The next result is the

analogue of Theorem 3.2 for the defaultable case. Its proof is quite similar except that we replace

(1+ rd) with eλ(1+ rd), hence omitted.
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Theorem 3.9 Assume thatλ ≤ λ∗. The intervalĪ is the set of all admissible rates. In addition,

whenĪ is nonempty, the optimality for the problem(1) is achieved atr = h̄(1).

From the results so far, we see that zero interest rate margin impliesλ∗ = 0, thus the profitability

of a defaultable ROSCA cannot be guaranteed. In addition, it is not difficult to show that the length

of Ī is a decreasing function ofλ, rd and an increasing function ofrl. In fact, for fixedrd (rl), there

is a threshold forrl (rd) beyond whichĪ becomes nonempty as long asλ ≤ λ∗. Also for fixedλ, we

can find an admissible rate if the interest rate margin is large enough, which is a similar conclusion

to Corollary 3.4.

The relationship between the hazard rate and the length ofĪ is illustrated in Figure 10 where

|Ī| is drawn as a function ofλ. As the intuition suggests, the length decreases as there is a higher

chance of defaults and the interest rate margin is lower. Figure 11 shows a similar result as in

Figure 5, graphs of|Ī| in terms of the interest rate margin. However, the length is smaller with

λ = 0.3%compared toλ = 0 case.

In the next section, we conduct the basic analysis and compare the performances of three opti-

mization problems in a more general setting, i.e., the original optimization problem (1), the same

problem with the additional constraint (3), and lastly the original problem with (4). We also con-

sider the defaultable case of ROSCA for heterogeneous members.

4. Optimal Ordering and System Efficiency

As opposed to the previous section where we considered the case ofhomogeneousmembers, we

are concerned withheterogeneousmembers in this section. Recall that memberi is assumed to

have the loan rater (i)
l and the loan rates are ordered as0 ≤ rd ≤ r (1)

l ≤ ∙ ∙ ∙ ≤ r (n)
l . The critical

difference is that we have order dependent constraintsπ(i)
σ(i)(r) ≥ 0 for all i. From now on, we call

such a nonnegative rateσ-admissible.

4.1 Benchmark case

Before presenting our solution approach, we introduce some notation for convenience. First, we

set

−π(i)
k (r) = −Π(i)

k (r)/(1+ rd)
k =: αikr + βik

17
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whereαik andβik are values dependent onrd andr (i)
l only. Second, for eachi, k ∈ {1, . . . , n}, we use

xik for a variable with values 0 or 1. Since any permutationσ is a bijection from{1, . . . , n} onto

itself, we can rephrase (1) as the following mixed integer nonlinear programming:

Problem Q0

min
xik,r

n∑

i,k=1

xik (αikr + βik)

s.t. r ≥ 0,

xik (αikr + βik) ≤ 0, i, k = 1, . . . , n,
n∑

i=1

xik = 1, k = 1, . . . , n,

n∑

k=1

xik = 1, i = 1, . . . , n,

xik ∈ {0,1}, i, k = 1, . . . , n.

This is exactlyProblem Q0 in Oral and Kettani [1992] except for that there are quadratic

constraints in our formulation. However, it turns out that they do not add extra complexity because

those terms also appear in the objective function. We follow the approach taken in Oral and Kettani

[1992] and, for this, we need to find upper and lower bounds forαikr + βik for eachi, k.

Going back to the original problem (1), suppose that we have a feasible(σ, r) such thatπ(i)
σ(i)(r) ≥

0 for all i = 1, . . . , n. Then, there exists somei with σ(i) = 1 becauseσ is invertible. Thus,

αi1r + βi1 ≤ 0. But, we note

αi1 =
n
∑n−1

j=1(1+ r (i)
l )− j

1+ rd
> 0⇒ r ≤ −

βi1

αi1
.

Therefore, for any feasible(σ, r), we get

0 ≤ r ≤ − min
i=1,...,n

βi1

αi1
=: r .

On this compact interval[0, r], linear functionsαikr + βik obtain global min and max and we

write D−ik andD+
ik, respectively, following the notation in Oral and Kettani [1992]. Then, based on

Proposition 1 in their paper, a mixed integer programming (MIP) appears:

18
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Problem Q1

min
xik ,r,ζik

n∑

i,k=1

(
D−ikxik + ζik

)

s.t. r ≥ 0,

D−ikxik + ζik ≤ 0, i, k = 1, . . . , n,

ζik ≥ αikr + βik − D−ikxik − D+
ik(1− xik), i, k = 1, . . . , n,

ζik ≥ 0, i, k = 1, . . . , n,
n∑

i=1

xik = 1, k = 1, . . . , n,

n∑

k=1

xik = 1, i = 1, . . . , n,

xik ∈ {0,1}, i, k = 1, . . . , n.

Looking closely at the constraints, ifxik = 0, then the constraints onζik reduce toζik = 0. If

xik = 1, then it is0 ≥ D−ik + ζik ≥ αikr + βik. Since the coefficient ofD−ikxik + ζik in the objective

function is 1, it is never optimal to haveD−ik + ζik > αikr + βik whenxik = 1. This reasoning shows

that two problems are equivalent. See Oral and Kettani [1992] for more details. Hence, we can

solve (1) using MIP solvers as long asrd andr (i)
l ’s make the problem feasible.

Although the above formulation would yield an optimal design of a ROSCA, it is not analyti-

cally tractable and does not provide insights. Hence, we choose to work on a subset of the feasible

region for the rest of this section. First, we defineI(i) to be the set of admissible rates for the

ROSCA with homogeneous members that have deposit raterd and loan rater (i)
l . Then, it is not

difficult to check thatI(1) ⊆ ∙ ∙ ∙ ⊆ I(n). Indeed, the right endpoint ofI(i) is, if non-empty,

n− 1−
∑n−1

j=1(1+ r (i)
l )− j

n
∑n−1

j=1(1+ r (i)
l )− j

=
n− 1

n
∑n−1

j=1(1+ r (i)
l )− j

−
1
n
,

which is increasing ini thanks tor (1)
l ≤ ∙ ∙ ∙ ≤ r (n)

l . And the left endpoint ofI(i) is independent of

r (i)
l . As a result, ifr ∈ I(1), then it isσ-admissible for any orderσ. A new optimization problem,

as a second step, is formulated as follows:

(5)

We emphasize that this problem is not a mere mathematical exercise. The nonnegativity of extra

profits works as an incentive for a member to participate in a ROSCA. It is conceivable that since
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a member might not know her positionex ante, she wants to make sure that she gets a nonnegative

extra profit regardless of her position. Hence, having aσ-admissible rater for any order can

be considered as a reasonable incentive scheme in a ROSCA with heterogenous members. The

following theorem parallels Theorem 3.2.

Theorem 4.1 Suppose that(5) is feasible. Then, the optimality for the problem is achieved at the

right endpoint ofI(1) with an optimal orderσ(i) = n+ 1− i for i = 1, . . . , n.

Remark 4.2 Voorneveld [2003] argued that, in the discussion of optimality, one plausible alter-

native is the notion ofPareto optimality. This type of approach is quite common as we see, for

example, in several studies using Pareto optimality in multi-objective optimization problem such as

by Shulkla and Deb [2007], Warburton [1987], Yano and Sakawa [1989]. We say thatσ is Pareto

optimal if there is no other order which results in at least one individual having the discounted

extra profit better off with no individual having it worse off, i.e., noσ̃ such that for alli = 1, . . . , n,

π(i)
σ(i)(r) ≤ π

(i)
σ̃(i)(r) with at least one of inequalities being strict. It is obvious that the optimal order

in Theorem 4.1 is Pareto optimal; otherwise, it couldn’t have been optimal in the first place. In

the case of a ROSCA with homogeneous members, every order is Pareto optimal. However, the

result is quite different in the heterogeneous case. As an illustration, Figures 12 and 13 exhibit the

efficiencies of all possible orders sorted from the lowest to the highest with a Pareto optimal order

marked with a square. Here, the efficiency of an orderσ is defined by

efficiency(σ) =

∑n
i=1 π

(i)
σ(i)(r)

max̃σ∈S
∑n

j=1 π
( j)
σ̃( j)(r)

whereS is the set of every permutation of{1, . . . , n}. One also notices that, depending on pa-

rameters, Pareto optimal orders can be observed in different regions of[0,1]. However, we can

prove some sufficient conditions that guarantee the Pareto optimality of every order. The reader is

referred to the appendix for a proof.

Proposition 4.3 Every order is Pareto optimal ifπ(n)
k (r) is strictly increasing ink, or if π(1)

k (r) is

strictly decreasing ink.

Remark 4.4 We note that there have been continued interests in the efficiency of microfinance

institutions as we briefly mentioned in the introduction. For instance, Gutiérrez-Nieto et al. [2007]

studied the financial efficiency of microfinance institutions, and Gutiérrez-Nieto et al. [2009] ex-

tended their previous model to measure both financial and social efficiency. Amersdorffer et al.
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[2014] assessed financial and social performance of credit cooperatives in Bulgaria, and Piot-

Lepetit and Nzongang [2014] considered the relationship between financial sustainability and

poverty outreach within microfinance institutions in Cameroon. These are empirical studies us-

ing data envelopment analysis, and their efficiencies are calculated to compare one microfinance

institution with another. The efficiency in this paper takes a different point of view as it aims at

understanding analytically how much the total discounted extra profit is reduced with non-optimal

orders applied.

One interpretation of Theorem 4.1 is that ROSCAs can be beneficial for members who are less

financially stable and thus possibly in greater needs of cash by receiving pots at earlier times while

their cash-flow structures are socially optimal at the same time. As a final remark, we can also

show that ifr (1)
l < ∙ ∙ ∙ < r (n)

l , i.e., there is no pair of members with the same credit rating, then the

order in the theorem is the unique optimal order that achieves the maximal efficiency.

4.2 Additional issues

In this subsection, we study two additional constraints and the resulting optimal solutions as in

Section 3. The first one is the constraint by which a ROSCA compensates opportunity costs caused

by receiving pots at later times. Similarly as in the previous section, it can be expressed as

π(i)
k (r) ≤ π(i)

k+1(r), k = 1, . . . , n− 1 (6)

for each memberi. However, in the proof of Proposition 4.3, it was shown that ifπ(n)
k (r) is increas-

ing in k, then so isπ(i)
k (r) for all i. Thus, (6) is equivalent toπ(n)

k (r) ≤ π(n)
k+1(r) for k = 1, . . . , n− 1.

Then, we are in the exact same position as in the case of homogeneous members except thatrl is

replaced withr (n)
l . Hence, the same arguments in the proof of Proposition 3.5 lead us to the propo-

sition below. Regarding an optimal order, we note that the constraint does not affect the order of

members, hence the optimal order in Theorem 4.1 remains unchanged. The obvious analogues of

Δ f (k) andΔg(k) areΔ(n)
f (k) andΔ(n)

g (k).

Proposition 4.5 There exists a nonnegative rater satisfying(6) if and only if the following condi-

tion holds:
(
r (n)

l − rd

)
<

r (n)
l (2− (k− 1)rd)

1−
(
1+ r (n)

l

)−n+k
, k = 1, . . . , n− 1.
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In this case, the feasible region for the problem(5) plus (6) is I(1)′ := I(1) ∩
{
r : r ≥ maxk

{
−

Δ
(n)
g (k)/Δ(n)

f (k)
}}

, and an optimal solution is obtained at the right endpoint ofI(1)′ with σ(i) =

n+ 1− i.

From above, we realize that the spectrum of loan rates is one meaningful factor which deter-

mines the feasibility and optimality of a ROSCA. The loan rate and the interest rate margin for

member1 set the scene for a ROSCA, but the feasible region can be significantly restricted de-

pending on the loan rate and the interest rate margin for membern. One sufficient condition for the

feasibility is thatr (1)
l − rd is large enough to makeI(1) nonempty and plus that(n−2) < 1/rd+1/r (n)

l

is also satisfied. This second condition gives us a clear picture about the relationship between pa-

rameter values that guarantee the increasing returns to ROSCA members. Similarly to what we

observed in Section 3.2, too many members or large deposit/loan rates make the above inequality

violated.

Now, let us move onto the other constraint which bounds the mean squared deviation of the

discounted extra profits:

n∑

i=1


π

(i)
σ(i)(r) −

1
n

n∑

j=1

π
( j)
σ( j)(r)




2

≤ M (7)

for some fixed positive real numberM. The left side of the inequality is a quadratic function of

r, which we write asaσr2 + 2bσr + cσ with positiveaσ. Then, we solve the next maximization

problem:

max
σ,r∈I(1)

n∑

i=1

π(i)
σ(i)(r)

s.t. aσr2 + 2bσr + cσ ≤ M. (8)

We note that the objective function is linear inr with a nonnegative slope as argued in the proof of

Theorem 4.1. Therefore, for any fixedσ such that (8) is feasible, i.e., there exists a nonnegativer

that satisfies the constraint, the best rate for that order is the largest real number in the intersection

of I(1) and the interval obtained from (8). From this reasoning, the next result easily follows.

Proposition 4.6 The optimal rate for the problem(5)plus(7) is given bymaxσ∈S
{
min{rσ,q} : rσ ≥

p, and (8) is feasible
}

whereI(1) = [p,q], if nonempty, andrσ = a−1
σ

(
− bσ +

√
b2
σ − aσ(cσ − M)

)
.

Unfortunately, the above optimization problem is formulated as an MIP with nonlinear con-

straints at best. There is in general no fast solution technique known for such problems. Since it is
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not our main concern to find an efficient algorithm for nonlinear MIPs in this work, we leave this

issue as a future consideration. In the numerical example below, we conduct an exhaustive search

to find the optimal order and the optimal rate.

Remark 4.7 Instead of findingr for givenr (i)
l ’s and other parameters, we can consider the problem

of finding loan rates which result in equal discounted extra profits. Thoseimplied loan rates with a

suitable orderσ then makeaσr2+2bσr+cσ = 0. To find such rates, we begin with the member who

is in then-th position. For that member, the discounted extra profit does not involve any loan rate.

(Recall thatL(i)
n (r) = 0 in Section 2.) With all other parameters fixed, the discounted extra profit

of this member is determined. Then, by equating this with other members’ discounted profits, the

implied loan rates can be calculated. In addition, it is straightforward to check that in order to make

these rates greater than or equal to the deposit rate, which is one of our assumptions, the ratesrd

andr should satisfy the following condition:

r

{
n− k

(1+ rd)n−k − 1
+ 1+

1
rd
− k

}

≥ 1, k = 1, . . . , n− 1.

Some examples are presented in Figure 14 which shows implied loan rates for members in a

ROSCA withn = 10. Note that there is no implied loan rate for the member in then-th position.

The figure shows that implied loan rates are affected by the rater. As r approaches the lower

bound, the implied loan rates decrease in member position, while they increase in position asr gets

bigger. Hence, for a small and suitabler, it seems possible to have an order that achieves fairness

and increasing discounted extra profits at the same time as long as loan rates are appropriately set.

But, asr increases, such orders are reversed as implied from numerical examples, suggesting the

existence of a trade-off between efficient orders and fair orders.

Before we end this subsection, we compare the solutions of optimization problems discussed

so far. In Figure 15, we show the percentage values of optimal solutions of (5), (5) plus (6), and (5)

plus (7) with respect to the optimal value of (1), which is solved using the commercial optimization

software CPLEX via the above MIP formulation. We observe that at least in this example the first

two subproblems achieve optimal values that are quite close to the optimum of the original problem

while those of the subproblem with fairness consideration decrease as the deposit rate increases.

4.3 Defaultable case

For the rest of this section, we discuss the optimal design of a ROSCA incorporating default risk

as done in Section 3. We assume the constant hazard rate model based on the exponential failure
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distribution with the hazard rateλ ≤ log
{
(1+ r (1)

l )/(1+ rd)
}
. Then, similarly as in Section 3.3 and

4.1, we have the following optimization problem:

(9)

whereĪ(1) is the set of admissible rates for a defaultable ROSCA with homogeneous members that

have deposit raterd and loan rater (1)
l , π̄(i)

σ(i)(r) := Π̄
(i)
k (r)/(1+ rd)k, Π̄(i)

k (r) :=
∑n

t=1Π
(i)
k,t(r) ∙ Qt, and

Π
(i)
k,t(r) :=





−Dt(1+ rd)k−t, if k > t;

Mk(r) −Dk − L
(i)
k (r), otherwise.

We note that (9) is a defaultable version of (5). The more general case can be handled using an

MIP formulation as done in Section 4.1. Hence, we rather focus on some analytical results related

to (9).

Theorem 4.8 Suppose that(9) is feasible. Then, the optimality for the problem is achieved at the

right endpoint ofĪ(1) with an optimal orderσ(i) = n+ 1− i for i = 1, . . . , n.

Intuitively, one expects that the optimal value of (9) decreases as the hazard rateλ increases, and

this is numerically verified in Figure 16. This happens because the feasible region becomes smaller

in λ. See Figure 10. As for Pareto optimality, a reasonable alternative measure of optimality, a

result similar to Proposition 4.3 can be shown using the same line of arguments. Hence, rather

than repeating the same idea, we provide Figure 17 which compares the efficiencies between the

orders in the benchmark case and the defaultable case. It is easy to see that the optimal values are

smaller in the defaultable case as the objective function decreases inλ in the feasible region. More

interestingly, the efficiencies as well are smaller in the defaultable case although the percentage

depends on a set of parameters.

5. Concluding Remarks

In this paper, we studied the optimal design of one well-known informal microfinance system,

rotating savings and credit association or ROSCA. By considering banking transactions which

result in the same cash inflows as a ROSCA, we defined a discounted extra profit that an investor

can earn by participating in the system and we formulated the design problem as optimization

problems.
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When members are homogeneous, we found a complete solution to the main problem with the

feasibility condition and the optimal rate. One notable finding is that, as the interest rate margin

becomes not favorable, a ROSCA can contribute to the wealth of each member in the system.

Also, the rate and the number of participants are affected by the banking deposit and loan rates.

To further study practical implications of a ROSCA, we studied the issues of delayed investment

opportunities and fairness. These essentially add constraints to the original formulation which can

be regarded as partial answers to those issues. For the former, we added a condition of increasing

discounted extra profits in member position as a compensation for opportunity costs. For the latter,

a constraint such that the sum of squared deviation of each extra profit from the average is bounded

by a fixed value is considered in order to achieve a fair distribution of the total extra profit from

the system. For the defaultable case, we found a sufficient condition that makes a ROSCA still

attractive to its members. Such a condition is satisfied when the interest rate margin is sufficiently

large and the hazard rate is below some bound which depends on the deposit rate and the loan rate.

A similar analysis is done for the case of heterogeneous members, which is more realistic

because loan rates can be different according to credit ratings of customers. Then, we showed that it

is possible to formulate the original problem in the form of mixed integer programming which can

be solved quite fast by any of the commercial optimization packages. We next presented a related

suboptimal but still realistic problem, and found the optimal order of members and the optimal rate.

The main finding is that the optimal value is achieved when members with higher loan rates are in

earlier positions, that is, receiving the pot earlier. This way, the system is optimized in terms of the

total extra profits, however, other practical issues such as fairness may require suboptimal orders.

As in the case of homogeneous members, we considered two additional issues and found that in the

case of fairness, the optimal order tends to be reversed if the rater is sufficiently large. A partial

solution to the investment opportunity costs is also suggested, which parallels the homogeneous

case. For both cases, two additional constraints make a system more attractive to members, but

from the viewpoint of maximizing the total extra profit, these constraints yield lower performances

of a ROSCA. The analysis for the defaultable case is also carried out for heterogeneous members. It

turns out that even though there is a default risk in a ROSCA, consistent results with the benchmark

case are obtained as long as the hazard rate is small enough.

To sum up, we addressed some of the issues that have not been fully answered in the ROSCA

literature, among which the system design together with the possible heterogeneity of members is

the main theme. The resulting optimal design could help establish ROSCAs as effective funding

sources for small and medium-sized businesses especially in developing economies. It has been

noted in the literature that such microfinance services play an important role in building sustainable

enterprises. The design maximizes their extra profits and it could lower their costs of capital so
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that entrepreneurs can avoid paying very high rates of interest to start businesses, sustain their

cash flow management and foster their recapitalization. Additionally, we addressed the issues of

increasing returns and fairness and incorporated default risks of a ROSCA by considering a hazard

rate model. There are two relevant topics that can be investigated in future research. One is an

empirical research of ROSCAs from the perspective of the optimal design we proposed in this

paper. The other is a thorough study of bidding ROSCAs which are also quite a popular form of

microfinance services observed in many countries around the globe.
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Appendix: Proofs

Proof of Lemma 3.1 Firstly, it can be easily checked thatf (1) < 0, f (n) > 0, and f ′(k) > 0 for all

k because

f ′(k) =





n+
n(1+rl )k log(1+rl )

rl (1+rl )n , if rl > 0;

2n, if rl = 0.

This observation implies thatf (∙) is strictly increasing. Hence,f (∙) has exactly one rootk0 in (1,n).

The rest of the proof is about the increasing property ofh(∙) in {1, ∙ ∙ ∙ , dk0 − 1e} and {bk0 +

1c, ∙ ∙ ∙ ,n}. It is enough to check for allk in two sets above,f (k + 1)g(k) − f (k)g(k + 1) ≥ 0.

Let l = 1/(1 + rl) andd = 1/(1 + rd). Rewriting the above inequality, we need to check for all

k = 1, ∙ ∙ ∙ , dk0 − 1e − 1,

(n− k) ln−k + n−
n−k−1∑

j=1

l j +


k−

n−k−1∑

j=1

l j


 d−k −

(
1+ ln−k

) k∑

j=0

d− j ≥ 0 (10)

We claim that for allx ∈ [0,1] and for alln ≥ k,

ψ(x, k,n) := (n− k)xn−k + n+
k
xk
−

1+ x− xn − xn+1

(1− x)xk
≥ 0.

Let ρ(x) = (1− x)xkψ(x, k, k). Then,ρ′(x) = −k− 1+ k(k+ 1)xk−1− (k2− 1)xk. Sinceρ′(1) = 0 and

ρ′(∙) is increasing on [0,1] as easily checked by looking atρ′′, we haveρ′(x) ≤ 0 for all x ∈ [0,1].

Therefore,ρ(∙) is decreasing on [0,1] withρ(1) = 0, and as a result, we getρ(x) ≥ 0 for all

x ∈ [0,1], i.e.,ψ(x, k, k) ≥ 0.

As an induction step, let us assume thatψ(x, k, k + m) ≥ 0 for some nonnegative valuem. One

can check that

ψ(x, k, k+ m+ 1) = ψ(x, k, k+ m) + η(x),

whereη(x) = (m+ 2)xm+1 − (m+ 1)xm + 1. Sinceη′(x) = (m+ 1)xm−1 {(m+ 2)x−m} = 0, we

know thatη has a minimum value atm/(m+ 2) in [0,1] andη(m/(m+ 2)) ≥ 0. This implies that

η(x) ≥ 0 for all x ∈ [0,1]. Hence,ψ(x, k, k+ m+ 1) ≥ 0 for all x ∈ [0,1]. Thus, the induction step

is complete and we have proved thatψ(x, k,n) ≥ 0 for all x ∈ [0,1] and for alln ≥ k.

The first step is to prove the inequality (10) on the first set. Choosek in {1, ∙ ∙ ∙ , dk0 − 1e − 1}.

Recall thatf (k) < f (k+1) < 0 for all k = 1, ∙ ∙ ∙ , dk0−1e−1, and f (k+1) < 0 implies
∑n−k−1

j=1 l j > k.
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Then,

Left hand side of (10)≥ (n− k) ln−k + n−
n−k−1∑

j=1

l j +


k−

n−k−1∑

j=1

l j


 l−k −

(
1+ ln−k

) k∑

j=0

l− j

= ψ(l, k,n)

Sincel ∈ [0,1], the inequality (10) holds.

The next step is to prove thath(k) ≤ h(k + 1) for all k = bk0 + 1c, ∙ ∙ ∙ ,n − 1. Recall that

f (k + 1) > f (k) > 0 for all k = bk0 + 1c, ∙ ∙ ∙ ,n− 1. Rewriting the inequality, it is enough to show

that for allk = bk0 + 1c, ∙ ∙ ∙ ,n− 1,

n− k−

k−1∑

j=0

d− j


 ln−k + n−

n−k−1∑

j=1

l j −
k−1∑

j=0

d− j +


k− 1−

n−k∑

j=1

l j


 d−k ≥ 0. (11)

Sincek− 1−
∑n−k

j=1 l j > 0 andk−
∑n−k−1

j=1 l j > 0, if n− k−
∑k−1

j=0 d− j ≥ 0, there is nothing to prove.

Now, we assume thatn− k−
∑k−1

j=0 d− j < 0. Then,

Left hand side of (11)≥


n− k−

k−1∑

j=0

d− j


 dn−k + n−

n−k−1∑

j=1

dj −
k−1∑

j=0

d− j +


k− 1−

n−k∑

j=1

dj


 d−k

= ψ(d, k,n)

Sinced ∈ [0,1], the proof is nowdone.

Proof of Theorem 3.2 First, assume thatr is admissible. Then, by definition,f (k)r + g(k) ≥ 0

for k = 1, ∙ ∙ ∙ ,n. Since f (∙) is an increasing function andk0 is the only root of f (∙), f (k) < 0

for k = 1, ∙ ∙ ∙ , dk0 − 1e and f (k) > 0 for k = bk0 + 1c, ∙ ∙ ∙ ,n. Therefore, we easily see that, for

k1 ≥ bk0 + 1c andk2 ≤ dk0 − 1e, we have

h(k1) ≤ r ≤ h(k2).

Hence,I is nonempty andr is in the interval.

Now, we prove the converse, i.e., any element inI is admissible. Choose anyr ∈ I. This leads

to f (k)r+g(k) ≥ 0 for all k ∈ {1, . . . , dk0 − 1e, bk0 + 1c, . . . , n}. If k0 is not an integer, then we obtain

the desired result becauseΠk(r) ≥ 0 holds for everyk = 1, . . . , n. If k0 is an integer, thenf (k0) = 0.

But, if the inequalityg(k0) ≥ 0 is true, then we still haveΠk(r) ≥ 0 for all k = 1, . . . , n. We claim

that indeedg(k0) is nonnegative whenk0 is an integer.

32
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

In the proof of Lemma 3.1, we show that

h(k) ≤ h(k+ 1)

for k = 1, . . . , dk0 − 1e − 1. The inequality remains true as long asf (k + 1) < 0 even whenk is

not an integer. (The proof above still applies to non-integerk’s.) Of course, here, we consider

f (∙) as a function defined onR+ by completing summations. Then, for a non-integerk, we get

h(a) ≤ h(a+ 1) ≤ ∙ ∙ ∙ ≤ h(k) ≤ h(k+ 1) wherea = k− bkc ∈ (0,1). It is easy to check thatf (1) < 0

andg(1) = n−1−
∑n−1

j=1(1+ rl)− j ≥ 0. The same inequalities still hold for any number in(0,1). This

makesh(a) ≥ 0 and thus we getg(k+1) ≥ 0 because it is assumed thatf (k+1) < 0. Consequently

by the continuity ofg(∙), we haveg(k0) ≥ 0. Therefore,r becomes an admissible rate regardless of

whetherk0 is an integer or not.

For the last statement, we see that the objective function in (1) is simply
(∑n

k=1 f (k)(1+rd)−k)r+
∑n

k=1 g(k)(1+ rd)−k. Each f (k) is increasing inrl. Then, we observe that

1
n

n∑

k=1

f (k)
(1+ rd)k

=

n∑

k=1





k− 1
(1+ rd)k

−
n−k∑

j=1

(
1

1+ rl

) j ( 1
1+ rd

)k




≥
n∑

k=1





k− 1
(1+ rd)k

−
n−k∑

j=1

(
1

1+ rd

) j+k




=

n∑

k=1

k− 1
(1+ rd)k

−
n∑

k=1

n∑

i=k+1

(
1

1+ rd

)i

= 0

where we usedrl ≥ rd. The double summation on the last line is equal to the first term on that line

after we interchange the order of summations. Hence, the objective function (1) is a linear function

with nonnegative slope, achieving its maximum at the right endpoint−g(1)/ f (1) = h(1).

Proof of Corollary 3.3 Let r̃ := rd = rl. If r̃ = 0, theng(k) = 0 for all k and thusΠk(r) = f (k)r.

Also, h(1) = h(n) = 0, which results inI = {̃r/2} = {0}. If n = 2, then it is simple to check that

h(1) = h(2) = r̃/2, soI = {̃r/2}.

Assume that̃r > 0 andn > 2. Since(1+ r̃)n ≥ R := 1+ r̃n+ r̃2n(n− 1)/2+ r̃3n(n− 1)(n− 2)/6,

g(1)
f (1)
−

g(n)
f (n)

=
1
n

{
(1+ r̃)n − 1− r̃

r̃(n− 1)
−

r̃(n− 1)

1− (1+ r̃) (1+ r̃)−n

}

≥
1
n

{
R− 1− r̃
r̃(n− 1)

−
r̃(n− 1)

1− (1+ r̃)R−1

}
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=
r̃2(n− 2)

36+ 18̃rn + 6̃r2n(n− 2)

{
3+ 6̃r + r̃2n(n− 2)

}
> 0.

This means that−g(n)/ f (n) > −g(1)/ f (1), which implies thatI is empty.

Proof of Proposition 3.5 We first note that

g(k+ 1)− (1+ rd)g(k) = −(1+ rd)
k + (1+ rl)

−(n−k) − rd g(k)

= −(1+ rd)
k + (1+ rl)

−(n−k) − rdn+ (1+ rd)
k − 1+ rd

n−k∑

j=1

(1+ rl)
− j

= (1+ rl)
−(n−k) − 1− rd


n−

n−k∑

j=1

(1+ rl)
− j


 .

This expression becomes−rdk whenrl = 0. Thus,Δg(k) is strictly negative. Similarly forrl > 0,

we have strictly negativeΔg(k)’s for all k. Consequently, a nonnegative rater satisfies (3) if and

only if Δ f (k) > 0 for all k.

Now, it remains to checkf (k + 1) > (1 + rd) f (k) for all k. If rl = 0, thenrd = 0 and thus the

inequality to check becomesf (k + 1) > f (k). Since f (∙) is strictly increasing withf ′(∙) = 2n, this

inequality is trivial. Let us assumerl > 0. In a straightforward manner, we have

f (k+ 1)− (1+ rd) f (k) > 0

⇔ k−
n−k−1∑

j=1

(
1

1+ rl

) j

> (1+ rd)




k− 1−

n−k∑

j=1

(
1

1+ rl

) j




⇔
k+ 1
1+ rd

−
n−k−1∑

j=0

(
1

1+ rl

) j 1
1+ rd

> k− 1−
n−k−1∑

j=0

(
1

1+ rl

) j 1
1+ rl

⇔ (1+ rl)
(
k+ 1− (k− 1)(1+ rd)

)
> (rl − rd)

n−k−1∑

j=0

(
1

1+ rl

) j

.

The remaining steps are obvious and thus omitted.

The second statement is straightforward to prove, using the arguments in the proof of Theo-

rem 3.2. Hence, we leave the details to the reader.

Proof of Lemma 3.8 Since f̄ (1) < 0, f̄ (n) > 0, and f̄ (∙) is continuous, there exists at least one

root in the interval(1,n). Assume by contradiction that there are two or more roots in the interval

(1,n). Then, there existsc in (1,n) such thatf̄ (c) = 0 and f̄ ′(c) ≤ 0. However, if f̄ (c) = 0 for
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somec, then f̄ ′(c) > 0 becausef̄ ′(k) = −λ f̄ (k) + ne−λ(k−1)
{
1+ (1+ rl)k−n log(1+ rl)/rl

}
if rl > 0;

f̄ ′(k) = −λ f̄ (k) + 2ne−λ(k−1) if rl = 0. Hence,f̄ (∙) has exactly one rootk0 in (1,n). The rest of the

proof is the same with the proof of Lemma 3.1 by replacingd with
{
eλ(1+ rd)

}−1
.

Proof of Theorem 4.1 The first part of the proof computes the optimal rate and the second part

finds an optimal order. For notational convenience, we writeΠ
(i)
k (r) as f (i)(k)r + g(i)(k). Note that

the objective function of (5) is



n∑

i=1

f (i)(σ(i))
(1+ rd)σ(i)


 r +

n∑

i=1

g(i)(σ(i))
(1+ rd)σ(i)

.

Then, as in the proof of Theorem 3.2, we userd ≤ r (i)
l in the following computations:

1
n

n∑

k=1

f (σ−1(k))(k)
(1+ rd)k

=

n∑

k=1





k− 1
(1+ rd)k

−
n−k∑

j=1




1

1+ r (σ−1(k))
l




j (
1

1+ rd

)k




≥
n∑

k=1





k− 1
(1+ rd)k

−
n−k∑

j=1

(
1

1+ rd

) j+k




=

n∑

k=1

k− 1
(1+ rd)k

−
n∑

k=1

n∑

i=k+1

(
1

1+ rd

)i

=

n∑

k=1

k− 1
(1+ rd)k

−
n∑

i=2

i − 1
(1+ rd)i

= 0.

Hence, the objective function has a nonnegative slope, thus it is maximized at the right end ofI(1).

As for an optimal order, we first fixn and r, and letα = (1 + rd)n/(1 + nr). For the rest of

this proof, we writesk for σ−1(k) for notational simplicity. (Ands′k for (σ′)−1(k), and so on.) Our

objective is to show thatσ∗(i) = n+ 1− i, or equivalently,s∗k = n+ 1− k is optimal. Recall that

n∑

i=1

π(i)
σ(i)(r) =

n∑

k=1

π(sk)
k (r) =

n∑

k=1

Mk(r) −Dk

(1+ rd)k
−

n∑

k=1

L
(sk)
k (r)

(1+ rd)k
.

Since the first summation on the right hand is independent ofr (i)
l ’s, it is enough to show that the

second summation is minimized whensk = n + 1 − k. In other words, we prove that for any

permutations,

α

n∑

k=1

L
(n+1−k)
k (r)

(1+ rd)k
= α

n∑

i=1

L
(i)
n+1−i(r)

(1+ rd)n+1−i
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=

n∑

i=1

(1+ rd)i−1

r (i)
l




1−




1

1+ r (i)
l




i−1


≤
n∑

k=1

(1+ rd)n−k

r (sk)
l




1−




1

1+ r (sk)
l




n−k

= α

n∑

k=1

L
(sk)
k (r)

(1+ rd)k

For a proof, we use an induction. Supposen = 2. Then, there are only two possible orders, and

we observe that

α

2∑

k=1

L
(3−k)
k (r)

(1+ rd)k
=

1+ rd

1+ r (2)
l

≤
1+ rd

1+ r (1)
l

= α

2∑

k=1

L
(sk)
k (r)

(1+ rd)k

wheresk = k. We suppose that the above inequality holds for up tom− 1. Let n = m. For any

given permutations, consider another permutations′ such that

s1 = p = s′j , sj = m= s′1.

For all otherk, sk = s′k. If s1 = m, thens′ = s. By construction, we note thats′ is a bijection from

{2, . . . ,m} to {1, . . . ,m− 1}. We then proceed as follows. Since the statement holds forn = m− 1,

m∑

i=1

(1+ rd)i−1

r (i)
l




1−




1

1+ r (i)
l




i−1


=

m−1∑

i=1

(1+ rd)i−1

r (i)
l




1−




1

1+ r (i)
l




i−1

+

(1+ rd)m−1

r (m)
l




1−




1

1+ r (m)
l




m−1


≤
m∑

k=2

(1+ rd)m−k

r
(s′k)
l




1−




1

1+ r
(s′k)
l




m−k



+

(1+ rd)m−1

r (m)
l




1−




1

1+ r (m)
l




m−1


=

m∑

k=1

(1+ rd)m−k

r
(s′k)
l




1−




1

1+ r
(s′k)
l




m−k



.

The above reasoning tells us that ifs′ = s, then we are done, and ifs′ , s, then it is enough to

show the next inequality:

(1+ rd)m−1

r
(s′1)
l




1−




1

1+ r
(s′1)
l




m−1



+

(1+ rd)m− j

r
(s′j )

l




1−




1

1+ r
(s′j )

l




m− j


≤
(1+ rd)m−1

r (s1)
l




1−




1

1+ r (s1)
l




m−1

+

(1+ rd)m− j

r
(sj )
l




1−




1

1+ r
(sj )
l




m− j

.
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Using the relationships1 = p = s′j andsj = m= s′1, this is simply

(1+ rd)m−1

r (m)
l




1−




1

1+ r (m)
l




m−1

+

(1+ rd)m− j

r (p)
l




1−




1

1+ r (p)
l




m− j


≤
(1+ rd)m−1

r (p)
l




1−




1

1+ r (p)
l




m−1

+

(1+ rd)m− j

r (m)
l




1−




1

1+ r (m)
l




m− j

.

But, then this is nothing but to show

(1+ rd)
m− j





m− j∑

i=1




1

1+ r (p)
l




i

−
m− j∑

i=1




1

1+ r (m)
l




i


≤ (1+ rd)
m−1





m−1∑

i=1




1

1+ r (p)
l




i

−
m−1∑

i=1




1

1+ r (m)
l




i

,

which is obvious from the condition0 ≤ rd ≤ r (p)
l ≤ r (m)

l . The proof iscomplete.

Proof of Proposition 4.3 Let us set

Δ
(i)
k (r) = π(i)

k+1(r) − π
(i)
k (r) = C +

rd

(1+ rd)k+1

n−k∑

j=1

1+ nr

(1+ r (i)
l ) j

+
1+ nr

(1+ rd)k+1(1+ r (i)
l )n−k

,

where

C =
Mk+1(r) −Dk+1

(1+ rd)k+1
−
Mk(r) −Dk

(1+ rd)k
.

Then,Δ(i)
k decreases ini becauser (1)

l ≤ r (2)
l ≤ ∙ ∙ ∙ ≤ r (n)

l . Therefore,mink Δ
(n)
k (r) > 0 is enough to

guarantee thatmink Δ
(i)
k (r) > 0 for all i = 1, . . . , n − 1. Similarly, maxk Δ

(1)
k (r) < 0 implies that

maxk Δ
(i)
k (r) < 0 for all i’s.

Suppose thatmink Δ
(n)
k (r) > 0, i.e., π(n)

k (r) is strictly increasing ink. When the current order

is changed, there should be at least one member, sayi, who is moved from a later position to an

earlier position. Sinceπ(i)
k (r) is also strictly increasing ink, this member is worse off by a new

order. Therefore, every order is Pareto optimal. In a similar fashion, whenmaxk Δ
(1)
k (r) < 0 and the

current order is changed, then there exists a member whose profit is reduced. Hence, every order

is Pareto optimal in this case aswell.

Proof of Theorem 4.8 The first part is similar to the proof of Theorem 4.1, utilizing the inequality

eλ(1+ rd) ≤ 1+ rl. For the second part, we first fixn andr, let β = {eλ(1+ rd)}n/(1+ nr), and write
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sk for σ−1(k) for notational simplicity. (Ands′k for (σ′)−1(k), and so on.) Our objective is to show

thatσ∗(i) = n+ 1− i, or equivalently,s∗k = n+ 1− k is optimal. Recall that

n∑

i=1

π̄(i)
σ(i)(r) =

n∑

k=1

π̄(sk)
k (r) =

n∑

k=1



(Mk(r) −Dk)eλ

{eλ(1+ rd)}k
−

k−1∑

t=1

DtQt

(1+ rd)t


 − eλ

n∑

k=1

L
(sk)
k (r)

{eλ(1+ rd)}k
.

Since the first summation on the right hand is independent ofr (i)
l ’s, it is enough to show that the

second summation is minimized whensk = n+ 1− k. Fix any permutations. Then, we get

β

n∑

k=1

L
(n+1−k)
k (r)

{eλ(1+ rd)}k
= β

n∑

i=1

L
(i)
n+1−i(r)

{eλ(1+ rd)}n+1−i

=

n∑

i=1

{eλ(1+ rd)}i−1

r (i)
l




1−




1

1+ r (i)
l




i−1


≤
n∑

k=1

{eλ(1+ rd)}n−k

r (sk)
l




1−




1

1+ r (sk)
l




n−k

= β

n∑

k=1

L
(sk)
k (r)

{eλ(1+ rd)}k

For the proof of the inequality, we adopt the method used in the proof of Theorem 4.1 witheλ(1+rd)

instead of1+ rd. Then, the result follows.
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Figure 1: Cash flow diagram from a ROSCA of memberi in thek-th position.
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Figure 2: Cash flow diagram from banking transactions of memberi in thek-th position.
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Figure 3: Graph ofh(∙) with respect to member position:rd = 0.3%, rl = 0.5%, andn = 10.
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Figure 4: Length ofI as a function of the de-
posit rate where fixing the interest rate marginδ
at three different values when there are 10 mem-
bers.
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Figure 5: Length ofI as a function of the in-
terest rate margin with the deposit rate at 0.3%,
0.5%, and 0.7% when there are 10 members.
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Figure 6: The smallest interest rate margin such
that |I| becomes zero wheren is the number of
members in the system.
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Figure 7: The maximal number of members that
produces a feasible solution to (1) as a function
of the deposit rate.

45
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Loan rate (%)

R
at

e 
(%

)

 

 

min I
max I

r*

Figure 8: minI, maxI, and r∗ in terms ofrl

whenrd = 0.3%andn = 10.
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Figure 9: minI, maxI, andr∗ in terms ofrd

whenrl = 0.6%andn = 10.
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Figure 10:|Ī| as a function ofλ with three dif-
ferentrl, andn = 10, rd = 0.3%.
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Figure 11:|Ī| as a function ofrl − rd with three
differentrd, andn = 10, λ = 0.3%
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Figure 12: Efficiencies of orders whenn = 5,
r = 0.3%, rd = 0.2%, and r (i)

l ’s are equally
spaced between 0.7% and 0.9%.
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Figure 13: Efficiencies of orders whenn = 5,
r = 0.4%, rd = 0.4%, and r (i)

l ’s are equally
spaced between 0.8% and 1.0%.
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Figure 14: Implied loan rates for members on
positions 1 to 9: the number of members is 10,
the admissible rates are 0.15204%, 0.152055%,
and 0.15207%, and the deposit rate (rd) is 0.3%.
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Figure 15: Ratios of maximal values of (5),
(5)+(6), and (5)+(7) to that of (1):n = 5,
M = 0.013, and ther (i)

l are 0.50%, 0.55%,
0.60%, 0.65%, and 0.70%.
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Figure 16: Optimal values of (9) as a function
of λ whenn = 10 andr (i)

l ’s are equally spaced
between 0.6% and 1.05% withrd at 0.1%, 0.2%
and 0.3%.
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Figure 17: Efficiencies of orders whenn = 5,
r = 0.4%, rd = 0.4%, and r (i)

l ’s are equally
spaced between 0.8% and 1.0% withλ at 0%
and 0.3%.
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