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a b s t r a c t

Phase-type distribution allows approximation of non-Markovian models, which permits to analyze
complex systems under Markovian deterioration. In addition, reliability data is often composed of
truncated and censored observations. This paper presents a novel approach that fits a restricted class of
discrete phase-type distribution through pre-specified hazard sequence from incomplete observations.
Numerical results are shown using Balakrishnan’s mimicked power transformers dataset. Furthermore,
it can be used to fit transition probabilities of maintenance optimization’s Markov decision process
models from incomplete reliability data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Phase-type distributions are widely used to approximate life-
time distributions because one can analyze a system under
Markovian deterioration, where the computation of the reliability
or the availability becomes tractable [17]. They are also able to
approximate general distribution since fitting a general phase-
type distribution corresponds to an automatic model-selection
within a large class of distribution [1].

In addition, reliability data are typically censored and trun-
cated, i.e. the exact failure times are not always known. For
example, some units have to be removed and inspected before
knowing whether they have failed or not [9,11,12]. Thus, when
fitting a lifetime model from such reliability data, one should take
into account these incomplete observations.

Hence, many studies focus on estimating general phase-type
distribution under incomplete reliability data. For instance,
Olsson (1996) [16] proposes a differential-equation based
Expectation–Maximization (EM) algorithm to fit general phase-
type distribution from right censored and interval censored ob-
servations.
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However, fitting general phase-type distributions from in-
complete observations when using EM algorithm turns out to
be computationally very expensive because it is not scalable
to the number of phases, where a large number of phases is
often needed for accurate approximation [2,14,15], and depends
heavily on the initial values [2]. In addition, the use of general
phase-type distribution or its canonical form is in general a non-
linear optimization problem, which contains local optima and
saddle points [2]. Thus, Thummler et al. (2006) [2] propose an
EM algorithm for fitting hyper-Erlang distribution, which is a sub-
class of general phase-type distributions from incomplete data
traces. Similarly, this paper’s main objective is to overcome the
curse of dimensionality by linking a phase-type distribution to a
pre-specified hazard function.

Since the Weibull distribution is widely used in reliability
engineering, we propose to fit a restricted class of discrete phase-
type (DPH) distribution by linking to a pre-specified hazard se-
quence that has a similar form than the discrete Weibull hazard
sequence [18] from censored and truncated observations. The use
of a pre-specified hazard sequence permits to be computationally
cheap, and prevents overfitting the reliability data.

This paper is organized as follows. In Section 2, the motivating
application is given by explaining the power transmission trans-
formers dataset. In Section 3, we describe the proposed lifetime
model. In Section 4, numerical results are given. In Section 5, a
conclusion and directions of future works are provided.
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Fig. 1. Power transformers data description.

2. Motivating application

Hong et al. (2009) [8] analyzed a power transmission trans-
formers dataset generated by an energy company that began
keeping records from 1980, where the company has no infor-
mation on units installed or failed before 1980. The data was
analyzed in 2008, where units still in service at that time were
considered as right-censored. The lifetime data of interest in this
paper is the power transmission transformer dataset from [3],
where they mimicked it for numerical results’ purposes. Fig. 1
depicts four different cases of how power transformers data is
generated.

• Case (a): let us denote nF as the number of realized failure
observations and let us denote yk the realized failure time
of kth observation for k = 1, . . . , nF , which corresponds to
a unit that is installed after 1980 and failed before 2008.

• Case (b): let us denote nB as the number of right-censored
observations and let us denote Bk the right-censored level
of kth observation for k = 1, . . . , nB, which refers to a unit
that is installed after 1980 but it is still in service in 2008,
i.e. it did not fail yet.

• Case (c): let us denote nTF as the number of left-truncated
and failure observations, let Ak be the left-truncated level
of kth truncated observation for k = 1, . . . , nTF and let zk
be the failure time of kth truncated observation for k =

1, . . . , nTF . Since the installation date of the failed trans-
former is unknown because it was installed before 1980,
the manufacturing date is used as a proxy to compute the
left-truncated level Ak and its failure time zk.

• Case (d): let us denote nC as the number of left-truncated
and right-censored observations, let A′

k be the left-truncated
level of kth truncated observation for k = 1, . . . , nC and let
Ck be the right-censored level of kth truncated observation
for k = 1, . . . , nC . Similarly to case (c), the manufacturing
date is used as a proxy of the installation date to compute
the left-truncated level A′

k and its right-censored time Ck.

The reason that the power transformers data generation is
divided into four different cases is for the derivation of the
likelihood function presented in the next section. For instance,
the difference between case a (failure) and case c (left-truncated
and failure) is that a failure observation yk is sampled from a
distribution with probability density function (pdf) g(·), whereas
a left-truncated failure observation zk is sampled from a truncated
distribution with pdf g(·)

1−G(Ak)
, where G(·) is the cumulative dis-

tribution function (CDF). Similar reasoning can be applied to the

second and fourth cases. The dataset of the power transmission
transformers is denoted as DPTD, where

DPTD =

{
(yk)k=1,...,nF , (Bk)k=1,...,nB , (Zk)k=1,...,nTF ,

(Ak)k=1,...,nTF , (Ck)k=1,...,nC ,
(
A′

k

)
k=1,...,nC

}
.

(1)

3. Model description

3.1. Overview

Let {Di}i≥0 be a discrete-time Markov chain (DTMC) with state
space S = {1, . . . , p, p + 1}, where the states 1, . . . , p are tran-
sient and the state p + 1 is absorbing. The DTMC is defined
with transition probability matrix P, which has the following

form P =

[
T t
0 1

]
, where T is the transition matrix between

transient states, t is the vector of probabilities of jumping to the
absorbing state, and 0 is a vector composed of only zeros. Let π
be the vector of initial probabilities, and let the stopping time
Y = inf {i ≥ 1 | Di = p + 1} be the time to absorption. Then, Y
has a discrete phase-type (DPH) distribution with parameters π
and T, but not t because t = e−Te, where e is a vector composed
of only ones. The probability mass function (pmf) of the DPH
distribution is

f (y; π, T) = π′Ty−1t for y > 0. (2)

The CDF of the DPH distribution is

F (y; π, T) = 1 − π′Tye. (3)

Since estimating all these probabilities are computationally very
expensive, some special cases of the sub-stochastic matrix T are
used for estimation purpose. For instance, Fig. 2 shows a DTMC
that is a discrete analogue of the Coxian distribution, which is
widely used for approximation [10,16]. Its transition matrix of
transient probabilities becomes

T =

⎡⎢⎢⎣
t1,1 t1,2 0 · · · 0
0 t2,2 t2,3 · · · 0
...

...
...

...
...

0 0 0 · · · tp,p

⎤⎥⎥⎦ , (4)

and the initial probability vector is π =

⎡⎢⎢⎣
1
0
...

0

⎤⎥⎥⎦. Then, the number

of parameters to be estimated becomes 2p − 1.
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Fig. 2. Diagram of a Markov chain widely used for approximation.

Fig. 3. Diagram of a Markov chain representing an aging process.

3.2. Proposed restricted DPH

We propose a phase-type aging model with DTMC described
in Fig. 3 with state-space X = {0, . . . ,m, F}, where the states
0, . . . ,m are transient and the state F is absorbing. Let si be the
probability to survive at phase i, whereas let ti be the probability
to fail at phase i, where ti = 1 − si. The phase m denotes the
maximum age of the system, i.e. tm = 1. Let A be the observed
lowest left-truncated level, and let B be the observed largest
right-censored level. The parameters of this model consist of
(ti)i=0,...,m and m, but only parameters (ti)i=A+1,...,B can be directly
estimated from left-truncated and right-censored observations
via maximum likelihood (ML) method. In other words, t̂i = 0 for
i = 0, . . . , A, B + 1, . . . ,m by maximizing its likelihood function,
which are undesired estimates. Hence, an interpolation method
is needed to estimate the parameters (ti)i=0,...,A and (ti)i=B+1,...,m.
Therefore, the proposed interpolation method is to link the DPH
distribution to a pre-specified hazard sequence.

The advantage of using the Markov chain representing an
aging process as described in Fig. 3 is that the DPH has a simple
hazard sequence h (·), which is given as

h (i) = P (Y = i | Y ≥ i) = ti.

For the design of the pre-specified hazard sequence, the func-
tion h (·) is non-decreasing since we are interested in a wear-out
phase system. Hence, one needs to fit a hazard sequence h (·) to
a dataset D such that

0 = h (0) ≤ · · · ≤ h (i) ≤ · · · ≤ h (m) = tm = 1.

The Weibull distribution is extensively used for modeling life-
time distribution, which is a powerful model to analyze a single
component system, but since it exhibits non-Markovian deteri-
oration, it makes difficult to analyze complex systems. The idea
of this paper is to use a hazard sequence h (·) that has the same
characteristics than the one of the discrete Weibull distribution
(III) [18], but with Markovian deterioration. It has scale parameter
0 < λ < 1 and shape parameter µ ≥ 1. Its hazard sequence is
given by hW (y; λ, µ) = −log (λ) yµ−1

∝ yµ−1. Hence, we propose
the following hazard sequence

h (i) = aiµ−1.

Since h (m) = amµ−1
= 1, then a = 1/mµ−1. Therefore, we

have the following hazard sequence

h (i) =

(
i
m

)µ−1

for i = 0, . . . ,m. (5)

Hence, the proposed restricted DPH distribution has now only
two parameters µ and m, which are independent to the number
of phases. From (2), the pmf of the DPH linked to a general hazard
sequence h (·) is

f (y; h (·)) =

y−1∏
i=0

[1 − h (i)] h (y) for y > 0. (6)

By using the proposed hazard sequence (5), the pmf of DPH (µ,

m) is

f (y; µ,m) =

y−1∏
i=0

[
1 −

(
i
m

)µ−1
]( y

m

)µ−1
for y > 0. (7)

The CDF of the DPH linked to a general hazard sequence h (·)

is

F (y; h (·)) = 1 −

y∏
i=0

[1 − h (i)] for y > 0. (8)

By using the proposed hazard sequence (5), the CDF of DPH (µ,

m) is

F (y; µ,m) = 1 −

y∏
i=0

[
1 −

(
i
m

)µ−1
]
for y > 0. (9)

Even though the hazard sequence of the discrete Weibull dis-
tribution is used, one can use other parametric hazard sequences
satisfying one needs such as bathtub shaped ones, where the
pmf & CDF can be computed from (6) and (8) without loss of
generality.

3.3. Likelihood

The maximum likelihood method is used to estimate the
parameters of the DPH distribution from left-truncated and
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right-censored observations (1). Let L (T;DPTD) be the likelihood
function of a DPH distribution with respect to the power trans-
formers data DPTD. Since failure, censored, truncated failure and
truncated censored samples are independent and identically dis-
tributed with respect to Y , we have from (2) and (3)

L (T;DPTD) =

[ nF∏
k=1

P (Y = yk)

][ nB∏
k=1

P (Y > Bk)

]
[ nTF∏

k=1

P (Y = zk)
P (Y > Ak)

][ nC∏
k=1

P (Y > Ck)

P
(
Y > A′

k

)]

=

[ nF∏
k=1

f (yk)

][ nB∏
k=1

1 − F (Bk)

][ nTF∏
k=1

f (zk)
1 − F (Ak)

]
[ nC∏

k=1

1 − F (Ck)

1 − F
(
A′

k

)] .

(10)

Then, from (10), its log-likelihood is given as

l (T;DPTD) =

nF∑
k=1

log (f (yk)) +

nB∑
k=1

log (1 − F (Bk))

+

nTF∑
k=1

log
(

f (zk)
1 − F (Ak)

)
+

nC∑
k=1

log

(
1 − F (Ck)

1 − F
(
A′

k

)) .

(11)

From (11), (7), and (9), the log-likelihood function of the DPH
distribution linked to the proposed hazard sequence (5) is given
as

l (µ,m;DPTD) =

nF∑
k=1

[yk−1∑
i=0

log

(
1 −

(
i
m

)µ−1
)

+ (µ − 1) log
(yk
m

)]

+

nB∑
k=1

[ Bk∑
i=0

log

(
1 −

(
i
m

)µ−1
)]

+

nTF∑
k=1

⎡⎣ zk−1∑
i=Ak+1

log

(
1 −

(
i
m

)µ−1
)

+ (µ − 1) log
( zk
m

)⎤⎦
+

nC∑
k=1

⎡⎣ Ck∑
i=Ak+1

log

(
1 −

(
i
m

)µ−1
)⎤⎦ .

(12)

Let Bmax be the largest observed value in the dataset DPTD.
Then, Bmax = max {maxk yk,maxk Bk,maxk Ck}. The parameters µ̂

and m̂ can be estimated by applying the direct method (DM) [7]
such as m̂ = argmaxm>Bmax

(
maxµ l (µ,m;DPTD)

)
. The estima-

tion of m consists of a model-selection procedure as m is the
number of phases. We can estimate m by iteratively maximizing
l (µ,m;DPTD) using the quasi-Newton method for m = Bmax +

∆, Bmax + 2∆, . . ., and choose the one that achieves the largest
likelihood value, where ∆ can be interpreted as the time interval
between two inspection times.

4. Numerical results

4.1. Overview

All the numerical computations are performed by using MAT-
LAB software. Numerical results are provided from the mimicked
power transformers dataset described in [3], where they propose
an EM algorithm for fitting the Weibull distribution from left-
truncated and right-censored observations, which is compared
to the proposed method. They use a sample size of 100 with
truncation percentage 40%, where the observations are sampled
from a Weibull distribution with parameters λ = 35 and µ = 3.
This paper also compares between the DPH distribution with sub-
stochastic matrix T defined in (4) and the proposed restricted DPH
distribution linked to the hazard sequence (5). The optimization
of the log-likelihood function l (T;DPTD) (11) is as follows

min
T

−l (T;DPTD)

s.t. Te ⪯ 1
T ⪰ 0

, (13)

where one can solve the mathematical program via sequential
quadratic programming (SQP) method [5,13].

4.2. Evaluation metric

For evaluating how well a distribution is fitted, Balakrishnan
& Mitra (2012) [3] use the mean squared error (MSE) between
the estimated parameters by their proposed EM algorithm and
the parameters of the original distribution since the same distri-
bution is used. However, in this paper, different distributions are
compared, thus the Jensen-Shanon divergence (DJS) is used, which
is a symmetric and smoothed version of the Kullback–Leibler
divergence (DKL) [6]. Since a discrete distribution is compared to
a continuous one, the fitted DPH can be considered as a piecewise
constant continuous distribution, but the computation of DKL and
DJS does not have a close form. Hence, this paper computes them
through discretization.

Let P be the pmf of the fitted DPH with sample space ΩP and
with cardinality |ΩP |. Since the original distribution is continu-
ous, its pmf is computed through discretization of its CDF. Let Q
be its pmf with sample space ΩQ and with cardinality

⏐⏐ΩQ
⏐⏐. The

KL-divergence is computed as DKL (P ∥ Q ) = −
∑

i P (i) log
(

Q (i)
P(i)

)
.

This measure may be inappropriate for our problem since |ΩP |

and
⏐⏐ΩQ

⏐⏐ may have different cardinality, which may cause in-
appropriate values. For example, if |ΩP | >

⏐⏐ΩQ
⏐⏐, then there

is a j such that P (j) > 0 and Q (j) = 0, which implies that
P (j) log

(
Q (j)
P(j)

)
= ∞. In addition, if |ΩP | <

⏐⏐ΩQ
⏐⏐, then there

is a j such that P (j) = 0 and Q (j) > 0, which implies
that P (j) log

(
Q (j)
P(j)

)
= 0, but one may want to penalize it.

The Jensen-Shanon divergence overcomes these issues for the
problem treated in this paper. Let M =

1
2 (P + Q ), which is a

discrete mixture distribution between the fitted DPH and the
discretized original distribution.

Then, we have

DJS (P ∥ Q ) =
1
2
DKL (P ∥ M) +

1
2
DKL (Q ∥ M) . (14)

4.3. Power transmission transformers data

The data consists of nF = 15, nB = 45, nTF = 35, and nC = 5.
Fig. 4(a) shows the log-likelihood l

(
T̂;DPTD

)
(LL) in dash–dot blue
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Fig. 4. Model selection of general and proposed DPH. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

lines, and the Jensen-Shanon divergence DJS

(
DPH

(
T̂
)

∥ Weibull

(35, 3)
)

(JSD) in dashed red line against the number of phases

p for the general DPH. One can observe that the log-likelihood
is maximized at p̂ = 24 by solving (13) using MATLAB SQP
Solver, where eight different initial points are used to handle lo-
cal optima, whereas the DJS

(
DPH

(
T̂
)

∥ Weibull (35, 3)
)
is min-

imized at p∗
= 12 by using (14). One can notice that there

is overfitting as the JSD for p = 24 is 0.0048, which is lower
than the one for p = 12, which is valued at 0.0091, where
their respective LL is −207.11 and −206.53. Hence, one can
distinguish that when fitting a general phase-type distribution,
a model-selection procedure is needed, which takes into ac-
count model complexity [1,16]. The detailed results of the general
DPH are given in Appendix. Fig. 4(b) shows the log-likelihood
l
(
µ̂,m;DPTD

)
(LL) in dash–dot blue line, and the Jensen-Shanon

divergence DJS
(
DPH

(
µ̂,m

)
∥ Weibull (35, 3)

)
(JSD) in dashed red

line against the parameter m. One can observe that the log-
likelihood is maximized at m̂ = 134 by solving (12), whereas
the DJS

(
DPH

(
µ̂,m

)
∥ Weibull (35, 3)

)
is minimized at m∗

=

129 by using (7) and (14). The estimate m̂ is a little bit over-
estimated compared to the corresponding m∗, which represents
the true estimate value for the given data. This may be due to
the repartition of the samples being left-skewed and also due
to not enough observations on the right-censored part. Also,
note that as the sample size increases, m̂ will get closer to m∗

as ML method is used. In addition, one can observe that the
curvature of LL and of DJS is quite similar, which shows that
even though the estimate m̂ is a little bit over-estimated, the
DJS
(
DPH

(
µ̂,m

)
∥ Weibull (35, 3)

)
value does not change much

whether m̂ or m∗ is used.
In Fig. 5, the graph (a) shows a stacked histogram of failure

observations in dark blue, of right-censored observations in light

blue, of left-truncated failure observations in green, and of left-
truncated right-censored observations in yellow. It also shows the
original distribution in a bold solid black line, the fitted Weibull
distribution by the EM algorithm proposed by Balakrishnan & Mi-
tra (2012) [3] in a dashed blue line, the fitted proposed restricted
DPH in a bold dashed red line, the fitted general DPH with 12
phases in a bold dash–dot magenta line, and the fitted general
DPH with 24 phases in a bold dotted green line. The histogram
shows that the data is composed of few failure observations and
they are all left-skewed; hence, the use of the censored and
truncated observations are needed for a relevant estimation. The
estimated parameters are m̂ = 134 and µ̂ = 2.859 by maximizing
(12) using quasi-Newton method. The Jensen Shanon divergence
for the proposed method is DJS

(
DPH

(
µ̂, m̂

)
∥ Weibull (35, 3)

)
=

0.00118. The estimated parameters of the Weibull distribution
by the EM algorithm are λ̂ = 34.36 and µ̂ = 2.924, where
DJS

(
Weibull

(
λ̂, µ̂

)
∥ Weibull (35, 3)

)
= 0.00046. The Jensen

Shanon divergence for the DPH with 12 phases is DJS

(
DPH

(
T̂
)

∥

Weibull (35, 3)
)

= 0.0048, whereas the one with 24 phases is

DJS

(
DPH

(
T̂
)

∥ Weibull (35, 3)
)

= 0.0091. One can graphically

observes that the general DPH for both phases overfits the data
as the estimated ones are bi-modal, whereas the proposed DPH
linked to the pre-specified hazard sequence has a similar shape
than the original one. This can be expected as the proposed
restricted DPH has only two parameters, whereas the general
DPH with 12 phases has 23 parameters, and the one with 24
phases has 47 parameters. The graph (b) shows the original
Weibull hazard rate in a bold solid black line, the hazard rate
of the fitted Weibull by EM algorithm in a solid blue line, the
fitted DPH’s hazard sequence in a bold solid red stairs, the fitted
general DPH’s hazard sequence with 12 phases in a bold dash–
dot magenta stairs, and the fitted general DPH’s hazard sequence
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Fig. 5. Approximation of power transmission transformers data. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

with 24 phases in a bold dotted green stairs. The fitted DPH’s
hazard sequence is closer or similar to the original one than the
fitted Weibull’s one up to around 60 years, but then the other
method behaves better. Moreover, even though larger error can
be seen from 70 years, the error in terms of DJS is low because
it corresponds to the right tail, which is practically near 0. Both
methods achieve similar result. However, the shape of the general
DPH distributions differs from the original one due to overfitting.
Therefore, the fitted proposed restricted DPH achieves a better
performance than the fitted general DPH as it is less susceptible
to skewed data as the general DPH overfits the data easily when
one considers only the LL metric. In addition, the fitted restricted
DPH allows to analyze multi-component systems with different
Weibull distributions easily thanks to its Markovian deterioration,
where the proposed method is able to fit transition probabili-
ties of maintenance optimization MDP models from incomplete
observations.

5. Conclusion

This paper proposes a ML method to fit a DPH distribution
linked to a pre-specified hazard sequence from left-truncated and
right-censored observations, where the pre-specified hazard se-
quence has a similar form than the discrete Weibull distribution’s
hazard sequence. By doing so, the proposed DPH has only two
parameters that are independent to the number of phases, which
overcomes the curse of dimensionality of general phase-type
distribution. For the experiment with the power transformers
data, the method presented in this paper is compared to the
Balakrishan & Mitra’s EM algorithm, and the fitted general DPH
distributions via DM, where similar performance is shown with
the fitted Weibull distribution, but achieves better result when
compared to the general DPH as it is less prone to overfitting.

In addition, the fitted proposed restricted DPH is more suited for
modeling complex systems thanks to its Markovian deterioration
as it uses an aging process.

Areas of further research are: (i) we are currently working
on a model-based Reinforcement Learning approach to find an
effective maintenance decision-making of a heterogeneous multi-
component system such as the one presented by Barde et al.
(2016) [4], where the transition probabilities of the model can
be fitted through the method presented in this paper from cen-
sored and/or truncated observations. (ii) we are also working on
bathtube hazard sequence for the proposed DPH since it is im-
portant to incorporate the full life-cycle of a system. (iii) Finally,
one can extend the proposed method to continuous phase type
distribution, but we believe that it will be challenging to solve it
efficiently.
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Appendix. Detailed analysis of general DPH

Table A.1 shows the log-likelihood, the Jensen-Shanon diver-
gence, and its computation time in second against the number of
phases used. In addition, as the log-likelihood function (11) may
possess several local optima, eight different initial points are used
to solve (13), and the one that achieves the best LL value is chosen
for each phase p.
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Table A.1
Analysis of general DPH.
# of phases LL JSD CT (s)

3 −211.68 0.0410 1
6 −209.02 0.0098 11
9 −207.76 0.0055 32
12 −207.11 0.0048 48
15 −206.72 0.0081 130
18 −206.68 0.0084 186
21 −206.59 0.0088 292
24 −206.53 0.0091 468
27 −206.75 0.0071 1123
30 −206.75 0.0073 2084
33 −206.76 0.0070 3697
36 −206.71 0.0081 5770
39 −206.67 0.0085 8465
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