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Combat modeling is one of the essential topics for military decision making. The Lanchester equation is a classic
method for modeling warfare, and many variations have extended its limitations and relaxed its assumptions. As a
model becomes more complex, solving it analytically becomes intractable or computationally expensive. Hence,
we propose two approximation methods: moment-matching scheme and a supporting method called battle-end
approximation. These methods give an approximate solution in a short amount of time, while maintaining a high
level of accuracy in simulation results in terms of hypothesis testing and numerical verification. They can be
applied to computationally intensive problems, such as optimal resource allocation and analysis with asymmetric
power like snipers or stealth aircrafts.
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1. Introduction

Combat modeling is a fundamental area in the military

research that supports strategic decision making such as

optimal allocation of resources in warfare. However, modeling

warfare is not trivial; it is complex in terms of its variety of

factors such as landscape, number of troops, composition of

troops, mutual interaction between soldiers. Lanchester (1916)

proposed a formal combat modeling scheme with a simple and

clear differential equation between two homogeneously armed

forces:

dBt

dt
¼ �rRt ð1Þ

dRt

dt
¼ �bBt ð2Þ

where Bt and Rt denote the strengths of each force at time t,

while r and b are the corresponding attrition rates. The effect

of the landscape or the mutual interactions between soldiers is

reflected in the attrition rates of the equation.

Several variations have appeared since Lanchester (1916)

introduced his modeling scheme in order to extend its

limitations and relax its assumptions. Since it is not appropri-

ate to express all the situations in a war with the constant

parameters, there are two different mainstreams of extension.

First, many studies have increased the sophistication of the

Lanchester model in deterministic setting. Bracken (1995)

developed a generalized homogeneous Lanchester model

using exponential index numbers to accommodate the

Lanchester’s square and linear law. They also empirically

validated the model with the Ardennes Campaign of World

War II. Hughes (1995) modified the original Lanchester

equation and proposed a new model called the ‘‘salvo combat

model’’ to describe modern missile warfare; this model

includes defensive firepower effects and uses discrete salvos

of missiles. Kaup et al (2005) suggested the (n, 1) mixed

forces model, which involves combat between n-type

heterogeneous forces and a homogeneous force. MacKay

(2009) extended the (m, 1) mixed forces model to the (m,

n) mixed forces model, where each force consists of m (or n)

types of heterogeneous forces; this paper also includes the

optimal target allocation problem.

Since the original Lanchester equation is deterministic, it

cannot represent any random consequences. Second line of

extension to the original Lanchester model is to add stochas-

ticity in order to include uncertainty. The main difference of a

stochastic Lanchester model is that it incorporates the

uncertainty in the attrition rates or target detection probabil-

ities using random variables. Taylor (1980) showed that a

stochastic Lanchester equation can be represented as a Markov

model. Lappi et al (2012) also suggested a dynamical

Markovian method of the battle similar to the model of

Taylor (1980). They developed a computationally lighter

model to predict only the outcome of battle, such as the

winning probability of blue forces, without calculating the
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joint distribution of the forces during warfare. Amacher and

Mandallaz (1986) represented the attrition rates by using

Brownian motion for the kill rate rather than using constants.

Karmeshu and Jaiswal (1986) considered environmental

randomness by treating the kill rate as a random variable that

contains dichotomous variables with a possible value of +1 or

-1. Armstrong (2005) developed a stochastic version of the

salvo combat model of Hughes (1995) with a probabilistic

variation in the damage caused by each hit and the probability

of success of each attack.

These elaborated Lanchester equations have enabled more

precise representations than the original modeling scheme.

However, as a model becomes more complex, it becomes

intractable to solve analytically; thus, it requires heavy

numerical computations. Computational cost explodes when

applying stochastic model to (m, n) mixed forces.

In this paper, we propose a new stochastic Lanchester-type

equation that was derived directly from the Markov model of

Taylor (1980). Taylor defined all the possible outcomes as

the states of the Markov model and assumed that there are

three possible outcomes after transition: 1 blue decreases, 1

red decreases, or no change. We reformulated this model as

stochastic difference equations with Bernoulli random vari-

ables, the probability of which depends on the attrition rate

and the strength of the opponents. We also present two

approximation algorithms. The first is called the moment-

matching scheme, which can be widely used for any other

stochastic Lanchester equations. The second one is the battle-

end approximation, which handles the situation when the

forces go to 0. These give not only the approximated joint

distribution of large heterogeneous forces, but also the battle-

end state distribution of each force. With the proposed

approximation, stochastic mixed force models can be solved

efficiently.

In the next section, we present our main concept, the

moment-matching scheme, and numerical results. We also

propose a supporting approximation method called the battle-

end approximation, which handles the situation when the

forces go to 0. Finally, we suggest some applications to which

these methods can be effectively applied.

2. Moment-matching scheme

In this paper, we develop a new but familiar form of stochastic

Lanchester-type equation modeled after Taylor (1980). The

proposed model follows difference equations:

Btþdt � Bt ¼ �Bern rRtdtð Þ ð3Þ

Rtþdt � Rt ¼ �Bern bBtdtð Þ ð4Þ

where Bern pð Þ is a Bernoulli random variable with a

probability p, while b and r are positive constants that denote

the attrition rates. Bt and Rt denote the strengths of blue and

red forces at time t. These equations mean that in a small

amount of time dt, 1 unit of a force’s strength is decreased by

a probability that depends on the opposite side’s strength.

Taylor assumed that there are three possible outcomes after

transition: 1 blue decreases, 1 red decreases, or no change.

The proposed model assumes one more possible outcome:

both decrease.

Like any other complex stochastic differential equation,

the suggested difference equations are also hard to solve

analytically when dt goes to 0. There are two ways to solve

such stochastic problems. On the one hand, the Monte Carlo

simulation method is widely used; it discretizes the model

with a small time fraction and generates paths for various

scenarios. Even though this method is powerful and has been

heavily used for several decades in various fields, it is

computationally expensive, especially in our case when the

forces become heterogeneous and the time fraction gets

smaller. Moreover, it gets harder to get information as forces

become large and complex because dt should be small

enough to make a parameter of Bernoulli random variables

less than 1 in Eqs. (3) and (4). As dt gets smaller, the

computational cost of the Monte Carlo simulation method

grows exponentially. On the other hand, one can use the

Markov model, which requires reformulating the original

stochastic equation in a Markovian form. Every possible

circumstance during the battle is defined as a state B;Rð Þ,
where B and R are nonnegative integers, denoting the strength

of each blue and red force. As in Taylor (1980), there are

three possible state transitions for each Dt. If B;Rð Þ is the

current state, it will transit to B� 1;Rð Þ w.p. rRDt, B;R� 1ð Þ
w.p. bBDt, and B;Rð Þ itself w.p. 1� rRDt � bBDt. The

number of states in this model grows exponentially as the

dimension grows. In the mixed force cases, the number of

component types determines the dimension, and dimension of

10 or more is common in practice. In such cases, the above

Markov model easily goes beyond the computational budget

even with modern computing hardware. Hence, we propose

approximation methods. We will start with homogeneous

forces (of 2 dimension) first, and then the result will be

extended (M, N) mixed forces (of M ? N dimension).

The key difference between deterministic and stochastic

models is their types of solutions. A deterministic model

gives a unique point at time t, whereas a stochastic model

gives the joint distribution of the forces at time t. Since the

direct estimation of the joint distribution from the equation

is challenging, we use the moments of each force to define

the properties of distribution. Preliminary observations using

Monte Carlo simulation of the proposed model showed that

the joint distribution is unimodal and bell shaped; therefore,

we approximate the joint distribution as multivariate Gaus-

sian. Justification for the Gaussian assumption will be

discussed at the end of the next section, Battle-end

approximation. Gaussian distribution is uniquely defined

by its mean and variance; hence, only the first and second
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moments are sufficient to characterize the distribution. The

first and second moments at time t þ dt given the moments

at time t are:

E Btþdt½ � ¼ E Bt½ � � rE Rt½ �dt ð5Þ

E Rtþdt½ � ¼ E Rt½ � � bE Bt½ �dt ð6Þ

E B2
tþdt

� �
¼ E B2

t

� �
� 2rE BtRt½ �dt þ rE Rt½ �dt ð7Þ

E R2
tþdt

� �
¼ E R2

t

� �
� 2bE BtRt½ �dt þ bE Bt½ �dt ð8Þ

E BtþdtRtþdt½ � ¼ E BtRt½ � � bE B2
t

� �
dt � rE R2

t

� �
dt

þ rbE BtRt½ �dt2 ð9Þ

We define a moment vector Mt as

Mt ¼ E Bt½ �;E Rt½ �;E B2
t

� �
;E R2

t

� �
;E BtRt½ �

� �T

where the notation ð ÞT is the transpose of a matrix. Then,

Eqs. (5)–(9) can be rewritten as:

Mtþdt ¼ I5 þ Vdtð ÞMt þ o dt2
� �

K ð10Þ

V ¼

0 �r 0 0 0

�b 0 0 0 0

0 a 0 0 �2r

b 0 0 0 �2b

0 0 �b �r 0

0

BBBB@

1

CCCCA
; K ¼

0

0

0

0

brE BtRt½ �

0

BBBB@

1

CCCCA

where I5 is the 5� 5 identity matrix. The detailed derivation of

Eqs. (7)–(9) is in Appendix 1.

Equation (10) shows that the moment vector at time t þ
dt;Mtþdt can be calculated from Mt: Since as dt ! 0; o dt2ð Þ
becomes 0, the following equation holds:

Mt ¼ expm Vð ÞtM0 ð11Þ

where expm is the exponential operator for a matrix. Equa-

tion (11) means that the first and second moments at arbitrary

time t can be derived from the initial moments directly. The

matrix exponential is easily computable using the eigende-

composition, so its mean and covariance at time t are also

easily derived from the initial moments.

Many combat models that have difference equations can be

solved similarly as (11) with a proper matrix V . The strength

of the difference Eqs. (3) and (4) is that a heterogeneous case

can be modeled and solved in a similar manner. Equations (3)

and (4) can be expanded to a heterogeneous case as follows:

Bi;tþdt � Bi;t ¼ �Bern
XN

k¼1

rkiRk;tdt

 !

8i ¼ 1. . .M ð12Þ

Rj;tþdt � Rj;t ¼ �Bern
XM

l¼1

bljBl;tdt

 !

8j ¼ 1. . .N ð13Þ

Here, Bi;t Rj;t

� �
denotes the strength of type i (type j)

component of blue (red) force at time t. As previously

mentioned, the simulation cost for computing the heteroge-

neously armed case is higher and more time-consuming than

that of a homogeneous case. However, since we are assuming

that the joint distribution is Gaussian in this scheme, it

becomes straightforward to get the joint distribution for the

heterogeneously armed force case. Equations (12) and (13)

show the combat situation with M-type of blue forces and N-

type of red forces. For example, if forces are composed of

tanks, infantry, and artillery, these are called 3-type hetero-

geneous forces. rki is the attrition rate for an ith type of blue

force being attacked by a kth type of red force. Similarly, blj is

the attrition rate for a jth type of red force being attacked by an

lth type of blue force. These attrition rate coefficients

implicitly contain the fire allocation terms for how to

distribute the total fire. However, in this paper we assume

fire allocation to be fixed. Estimating the coefficients will be

discussed in the conclusion section as future research.

We can approximate a multivariate Gaussian distribution

using first and second moments with an appropriate matrix V

similar to the homogeneous case. The moment vector Mt for

the differential Eqs. (12) and (13) is as follows:

Mt ¼ mB;t;mR;t;mB2;t;mR2;t;mBB;t;mRR;t;mBR;t

� �T ð14Þ

where Mt is a column vector with the size

M2þN2þ3Mþ3Nþ2MN
2

� 1
� �

, and each element in Eq. (14) is

explained in Appendix 2. For example, Eq. (15) shows the

moment vector Mt for the M = N = 2 case.

Mt ¼ ðE B1½ �;E B2½ �;E R1½ �;E R2½ �;E B2
1

� �
;E B2

2

� �
;E R2

1

� �
;E R2

2

� �
;

E B1B2½ �;E R1R2½ �;E B1R1½ �;E B1R2½ �;E B2R1½ �;E B2R2½ �ÞT

ð15Þ

We use two simple numerical examples to demonstrate how

the approximated distribution is similar to the true distribution

obtained from the Monte Carlo simulation. We assume that the

Monte Carlo simulation result with sufficient time converges

to the true distribution. In this paper, we use a CPU i5-2500

(memory = 4 GB) computer for the hardware and a

MATLAB R2014b for the software.

2.1. Experiment setting 1 (homogeneous case)

B0 ¼ 100; R0 ¼ 80; b ¼ 01; r ¼ 0:12

First experiment setting 1 is the homogeneous case; the blue

and red forces each have only one type of weapon system. The

initial strength of the blue force is 100, and the red force is 80.

The strength of the red force is 20% less than that of the blue

force, but the attrition rate of the red force is (0.12); 20%

higher than that of the blue force (0.1).
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The joint distribution of each force with the experiment

setting 1 at time t = 5 is plotted in Figure 1. The left

figure shows the simulation result, and the right figure shows

the Gaussian approximation obtained by the moment-matching

scheme. Since we matched up to 2nd moments, the mean

vector and the covariance matrix are the same with the original

stochastic process. We approximated the unknown bell-shaped

unimodal distribution to Gaussian; obviously, there is a slight

difference as we can see in Figure 1. However, it seems to be

similar with the human eye.

Hence, we applied statistical hypothesis testing concerning

normality. It is truly obvious that the true distribution is not a

Gaussian distribution, but we can get an intuition from this

hypothesis test that the approximation is reasonable. The null

hypothesis is that the samples from the true distribution can be

interpreted as samples from a Gaussian distribution, whereas

the alternative hypothesis indicates that these samples cannot

be interpreted as samples from a Gaussian distribution. In our

first try, we randomly sampled 1000 samples from the true

distribution and used Henze–Zirkler’s multivariate normality

test (Henze and Zirkler, 1990). The resulting Henze–Zirkler’s

statistics was 0.0943, which does not reject the null hypothesis

at the significance level at 0.05. Since we sampled randomly,

there were some uncertainties that 1000 samples were not

enough to represent the true distribution well. We sampled

with 10,000 sample sizes 100 times; only 22% of all the

hypothesis tests did not reject the null hypothesis. However,

with these hypothesis test results, we can carefully say that the

true distribution is fairly similar with Gaussian. Justification

for the Gaussian assumption will be discussed at the end of the

next section, Battle-end approximation.

Therefore, we can ensure that the approximated distribution

is good enough to describe the true distribution. A Monte

Carlo simulation takes about 20 min to get the joint distribu-

tion of specific time t with a small time fraction dt ¼ 10�6;

whereas the approximation method takes 0.12 s and gives a

very similar distribution. If the size of each force gets bigger,

the simulation takes much longer to get the exact distribution.

However, the approximation method does not depend on the

size of the forces and can handle a very large number of troops

effectively.

Most actual battles are stochastic, and forces are heteroge-

neously armed. In many previous researches, however, it was

hard to get a good distributional solution that could substitute

the simulation because it is not tractable if we build a complex

model. As we mentioned before, the proposed approximation

provides a remarkable computational benefit by assuming the

distribution as Gaussian.

Experiment setting 2 is a heterogeneous case in which each

force has two different types of weapon systems. Since there

are two types for each force, the initial strengths of each force

become vectors denoted in bold face. Similarly, the attrition

rates now take a matrix form. For example, b12, which is an (1,

2) element of the attrition rate matrix b, denotes the attrition

rate of a 1st type of blue force hitting a 2nd type of red force.

We used the 2-type versus 2-type case to demonstrate the joint

distributions of each type of force as a 2-dim figure. As

mentioned before, in this paper we assume a fixed fire

allocation; adaptive fire allocation will be discussed in the

conclusion section as future research.

2.2. Experiment setting 2 (heterogeneous case)

B0 ¼
100

30

� 	
; R0 ¼

60

80

� 	
;

b ¼
0:08 0:12

0:15 0:08

� 	
; r ¼

0:15 0:04

0:08 0:12

� 	
;

Since there are 4 random variable ðB1;t;B2;t;R1;t;R2;tÞ, it is
hard to visualize the joint distribution pictorially. Figure 2

shows the joint distribution of aggregated forces with exper-

iment setting 2 at time t = 3. The aggregated force is the sum

of the 1st and 2nd types of each forces. Figure 3 shows the 4

joint distributions of all pairs of each force type. The 4 joint

distributions on the left side are the results from the

Figure 1 Joint distribution of two forces in the homogeneous case t ¼ 5 in experiment setting 1 (left simulation, right approximation).
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simulation, and that on the right side are the results from the

approximation. Each figure in Figure 3 has subtitles. For

example, ‘‘B1 versus R1’’ describes the joint distribution

between the 1st type of blue force and the 1st type of red force.

Like the homogeneous case, there are obvious slight differ-

ences that we can see in Figures 2 and 3. However, the

approximation seems good enough to describe the features of

the true distribution.

The moment-matching scheme works well in the early and

middle phases of warfare, but it starts to break down toward

the end of a battle (e.g., E Bt½ � ¼ 0). At the end of battle, the

simulation or Markovian model does not go under 0 because

state transition does not happen. However, this moment-

matching method does not restrict a situation wherein Bt and

Rt become negative. So, the approximated distribution using

the moment-matching scheme becomes different from the

simulation result as time progresses, especially at the end of

the battle. Therefore, we propose a supporting approximation

method called battle-end approximation; we use the term

battle-end to represent the end of a battle.

3. Battle-end approximation

The moment-matching scheme mainly concerns the approxi-

mation of the joint distribution during a battle, which means

the time before battle ends. In this section, we focus on the

time close to the end of a battle.

Many previous works on stochastic combat models focused

on computing winning (or losing) probability (Lappi et al,

2012). However, it is also important to calculate the distribu-

tion of survivors for each force type rather because the number

of survivors has much more information than just a win or loss

(Weale, 1992). It is important to know the survivor distribu-

tions of an ally or an enemy at a specific time t in order to

analyze the damage or effectiveness of an attack. In this paper,

Figure 3 Joint distribution for each pair of forces at t = 3 in experiment setting 2 (left simulation, right approximation).

Figure 2 Joint distribution for aggregated forces at t = 3 in experiment setting 2 (left simulation, right approximation).
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the situation when a battle is over called the ‘‘battle-end’’ state.

This ‘‘battle-end’’ state’s probability distribution was not

considered or was only able to be obtained with Monte Carlo

sampling in previous works. We propose the battle-end

approximation method based on the moment-matching

scheme.

For the brevity of discussion, we use homogeneous case

(hence, 2-dim case) in this section. The result can be easily

extended to mixed force cases. Since we are approximating the

joint distribution as Gaussian, it is straightforward to compute

the probability of battle states as listed in Table 1. If we

assume that c is the minimal strength to be able to fight, then

the probability can be calculated directly from the Gaussian

cumulative distribution function as shown in Table 1, where lt
and Rt are the mean and covariance of the distribution at an

arbitrary time t. Here, U2 a; b½ �; lt;Rtð Þ denotes the bivariate

Gaussian cumulative distribution function with lt and Rt. For

simplicity, we assume that the minimal strength c is equal to 0

for the rest of the paper.

As mentioned earlier, we propose an approximation method

to get both the battle-state probability and the distribution of

survivors at the ‘‘battle-end’’ state.

Here, T is the time that the red force is defeated (i.e., the

event of T ¼ t is the same event as Rt ¼ 0). What we are

interested in is the distribution of blue force survivors when

the red force is defeated: p BT ¼ xð Þ: By the law of total

probability, we get the following equation:

p BT ¼ xð Þ ¼
Z 1

0

p T ¼ tð Þp Bt ¼ xjT ¼ tð Þdt ð16Þ

Equation (16) can be rewritten as:

pT tð Þ Probability density function of T

pBT
xð Þ Probability density function of BT

pBT
xjT ¼ tð Þ Conditional probability density function of BT

pBT
xð Þ ¼

Z 1

0

pT tð ÞpBT
xjT ¼ tð Þdt

¼
Z 1

0

pT tð ÞpBT
xjRt ¼ 0ð Þdt

ð17Þ

Note that pBT
xjRt ¼ 0ð Þ is a Gaussian distribution, because

it is a conditional distribution of Bt;Rt½ �T; which is the

bivariate Gaussian random vector. However, the first term

pT tð Þ is not Gaussian as shown in Eq. (17). Thus, we have to

approximate the distribution by calculating the finite differ-

ence of P T\tð Þ with respect to t. By the definition of T,

P T\tð Þ ¼ P Rt\0ð Þ; where Rt is the univariate Gaussian.

Since calculating P Rt\0ð Þ is trivial, we can numerically

approximate pT tð Þ; and the integration in Eq. (17) can be

numerically calculated. This battle-end approximation can be

extended to heterogeneous cases.

In the previous section, we proposed the approximation

methods applied to a stochastic Lanchester equation, which

give the joint distribution of all force components. In this

section, we propose the battle-end approximation that supports

the moment-matching scheme when the forces become 0 and

gives the survivor distribution at the battle-end state.

To demonstrate the suitability of the battle-end approxima-

tion, we use the experiment setting 1 with a different time

(t = 10). The joint distribution of each force with experiment

setting 1 at time t = 10 is plotted in Figure 4. The left

figure shows the simulation result, and the right figure shows

Table 1 Probabilities of battle states for a homogeneous case

Battle States Notation Probability

Both defeated P Dtð Þ U2 c; c½ �; lt;Rtð Þ
Blue wins P Btð Þ U2 c;1½ �; lt;Rtð Þ � P Dtð Þ
Red wins P Rtð Þ U2 1; c½ �; lt;Rtð Þ � P Dtð Þ
Continues to fight P Ctð Þ 1� P Btð Þ � P Rtð Þ þ P Dtð Þ

Figure 4 Two joint distributions of each force in the homogeneous case t ¼ 10 in experiment setting 1 (left simulation, right
approximation).
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the Gaussian approximation obtained by moment-matching

and battle-end approximation. Still, both joint distributions

seem similar; a notable thing is that both seem to start

shrinking to negative. This shrinkage means that there are

some probabilities of battle ends with a blue force victory.

Actually, the joint distribution does not go under 0 because the

battle is stopped at the boundary. Rather than being negative,

the probability cumulates on each axis: X axis (R = 0) and Y

axis (B = 0). Figure 5 shows the probability of survivors of

the blue forces when the battle ends before t = 10,

p BT ¼ xjT\10ð Þ: Figure 5 presents the probability density

functions along the X axis (R = 0) in Figure 4.

Figure 6 shows a battle-state diagram of experiment setting

1, and each line represents the 4 states specified in Table 1. It

shows a similar shape to Lappi et al (2012), starting from the

Continues to fight state and decaying with the rise of Blue wins

or Red wins states. The solid lines represent the state

probabilities from the true distribution, and the dotted line

represents the approximated distribution. These lines show

good matching over time.

For more justification of the Gaussian approximation, we

follow the approach of Armstrong (2011), which verifies the

stochastic salvo models of naval missile combat as suggested

by Armstrong (2005) with various sets of parameter values.

We used the similar verification procedure as Armstrong

(2011).

Specifically, we generated the scenarios in a wide range to

cover various situations in combat, and the scenarios were

used as inputs to the approximation and Monte Carlo

simulations for comparing their battle outcomes.

We considered the homogeneous case in various situations.

The attrition rate of the red force was set to 0.01, and the

attrition rate of the blue force varied from 0.05 to 0.15 with an

increment of 0.01. Since the attrition rate represents the

relative fire power per unit strength of force, we used the same

attrition rate parameter set for following numerical experi-

ments, which have different strengths of force. We divided

each force strength into 3 cases based on the size listed in

Table 2. Like the attrition rate, we fixed the strength of red

forces for each case. Since each case had 16 scenarios, we

generated a total 528 scenarios (48 cases for the strength of

force 9 11 scenarios for the attrition rate).

We compared 3 different measures of fit: the winning

probability of the blue force at the end of battle as well as the

mean and the standard deviation of the blue force survivors at

the end of battle.

Figures 7 and 8 are the numerical results. Figure 7 repre-

sents the winning probability of the blue force at the end of

battle. Each symbol indicates the type listed in Table 2. As we

can see in this figure, the winning probability from the

approximation is almost same as that from the simulation. To

be more accurate, we conducted a linear regression and got a

slope of 1.0034 with an R-squared value nearly 1 and a root-

mean-squared error of 0.00588. Hence, we can ensure the

Gaussian accurately approximates the true distribution based

on the winning probability at the end of the battle. Figure 8

shows the average and the standard deviation of blue force

Table 2 Experiment settings for numerical verification

Type Strength of red force Strength of blue force

Small 10 From 5 to 20 with an increment of 1 (5, 6, …, 20)
Middle 100 From 50 to 200 with an increment of 10 (50, 60, …, 200)
Large 1000 From 500 to 2000 with an increment of 100 (500, 600, …, 2000)

Figure 5 Battle-end state approximation in experiment setting
1.

Figure 6 Experiment setting 1: battle-state diagram.
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survivors with a log-scaled plot. We can see that it is not as

clear as Figure 7. Even though the slopes are 0.9984 and

0.9999 for mean and standard deviation with an R-squared

value of nearly 1, some points deviated from the Y = X line.

All the experiment settings for these points are ‘‘blue

overwhelmingly losing’’ scenarios such as B = 50, R = 100,

b = 0.05, and r = 0.1. Since we are plotting the properties of

blue force survivors, in ‘‘blue overwhelmingly losing’’

scenarios, it seems hard to evaluate the possible blue force

survivors because it happens very rarely. Other than these

scenarios, all the points are in the Y = X line. One more

notable point is that it works quite well even though the troop

size is small as shown in Table 2. However, we approximated

the original discrete stochastic process as Gaussian, which is

the continuous distribution; we thought that at least more than

5 for each force is appropriate for the approximation. Less than

5 for each force would be too small to fit as continuous

distribution.

4. Applications

Since the moment-matching scheme is a fast and efficient

approximation, it can be employed in many applications. In

this section, we included 2 application studies: asymmetry

force analysis and optimal resource allocation.

In many realistic combat situations, the presence of

asymmetric weapon plays critical roles. Hence, analysis based

on aggregating asymmetric force into one homogeneous force

may result in unrealistic conclusion. The heterogeneously

armed force is much more realistic than the homogeneous one,

but computational effort grows exponentially as the number of

troops and type of weapon systems increase in the Markov

chain-type models. However, moment-matching can compute

heterogeneously armed forces very fast without aggregating

forces to a homogeneous one. Thus, by taking this computa-

tional advantage, we can conduct a sensitivity analysis for an

asymmetrical heterogeneous force. For example, we can

analyze the change of winning probability if we increase the

specific type of our forces. These kinds of analyses are hard to

conduct with Monte Carlo simulations because of heavy

computation, whereas the moment-matching scheme provides

an efficient approximate solution.

4.1. Experiment setting 3

B ¼
30

40

80

2

64

3

75; R ¼
84

135

70

2

64

3

75;

b ¼
0:16 0:1 0:2

0:25 0:1 0:2

0:25 0:1 0:16

2

64

3

75; r ¼
0:12 0:1 0:005

0:1 0:08 0:005

0:08 0:1 0:005

2

64

3

75

Experiment setting 3 is a good example of an asymmetric

heterogeneous force. Blue forces have a smaller number of

troops than red forces, but they have a higher attrition rate

b. Red forces have a larger number of troops than blue forcesFigure 7 Winning probability of blue force.

Figure 8 Average (left) and standard deviation (right) of blue force survivors.
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but have a lower attrition rate r and an especially low attrition

rate of 0.005 for the 3rd weapon-type of blue forces. In real

battle, there would be even more complicated relationships

between forces. If we analyzed after aggregating the force into

a homogeneous one, these complex interactive relationships

would be lost during the aggregation. The aggregation order

makes a noticeable difference as seen in Figure 9. If we

calculate the joint distribution after aggregation, red forces

overwhelm blue forces because the size of red forces is more

than twice of blue forces. However, if we calculate the joint

distribution before aggregation, blue forces overcome numer-

ical inferiority because of the low attrition rate of 0.005 in r.

Calculation after aggregation means aggregating 3 types of

each force into a single homogeneous force and calculating the

joint distribution of aggregated forces. Naturally, calculation

before aggregation means calculating the joint distribution of

heterogeneous forces first and aggregating the result. The low

attrition rate of the 3rd type of blue forces in r is an interesting

and remarkable situation in experiment setting 3. If we

calculate after aggregation, this condition would not be taken

into consideration because we would be summarizing a 3� 3

matrix r into one constant; so, we should calculate without

aggregation. The 3rd type of blue forces represents a difficult

opponent-hitting force, such as a sniper on a battlefield

situation. The line marked with squares in Figure 9 does not

reflect this weapon effect, but the line marked with circles

shows that the 3rd type of blue force effectively eliminates all

of the red forces as time goes on.

In experiment setting 3, we set r�3 (the 3rd column of

attrition rate r) to 0.005 at first, and we observed the battle-

state probability change as the value of the 3rd column and the

attrition rate varied. The r�3 means how easily the 3rd type of

blue force can be killed by the red forces. If this value

increases, then the 3rd type of blue force will be hit more by

red forces.

Figure 10 is a diagram that shows the change of battle-state

probability as r�3 varies from 0.001 to 0.03. If this value

decreases, the probability of blue’s victory increases. If this

value increases, the probability of red’s victory increases. This

sensitivity analysis is computationally heavier if we use only

the simulation. Furthermore, this analysis can be used in an

optimal decision-making problem like optimal resource allo-

cation or optimal supply, which leads us to the next application

topic.

Another promising application is optimal resource alloca-

tion. In this paper, the word allocation refers to deciding the

composition of forces within a limited budget, not the

placement of weapon. Even if all the information is given or

known, deciding the optimal composition of our forces against

an enemy is not trivial when there are a lot of possible

combinations of forces. The number of feasible compositions

gets exponentially larger as the number of troops or the budget

increases. It is too computationally heavy to compute all the

Figure 9 Joint distribution for the asymmetric force case (experiment setting 3) before and after aggregation at t = 20.

Figure 10 Battle-state probability change as r�3 at t = 20.
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feasible compositions with simulation. However, our moment-

matching helps to compute the joint distribution within a short

time and can be applied to modern military systems or

complex warfare models, such as network centric warfare.

These types of applications will be studied in further research.

5. Conclusion

As modern warfare becomes more complex, newly developed

stochastic Lanchester equations also become complex; in the

process, it gets intractable and computationally heavy to get a

distributional solution. In this paper, we proposed two approx-

imation methods, namely the moment-matching scheme and

battle-end approximation, which can approximate a stochastic

Lanchester equation solution with a high level of accuracy to

the true distribution. This approximation helps to conduct

computationally demanding applications like asymmetry force

analysis, optimal resource allocation, attrition rate estimation.

We also expect that this method can solve much more complex

warfare models, such as network centric warfare.

For the heterogeneous case, we assumed a fixed fire allocation

in this paper. The optimal fire allocation problem is one of the

popular applications of combat modeling, and a relaxation of our

approximation algorithm to a non-fixed fire allocation assump-

tion will be a promising subject for further research. One

possible way to tackle this problem is to fix the fire allocation for

certain small amount of time and do same procedure after we

change allocation. Since this method is fast enough, changing the

fire allocation certain amount does not affect the computational

cost of our method. For example, if we assume there are decision

epochs t0; t1; t2; . . . that the commander can change the fire

allocation in each epoch, then we start with the moment vector

M0 and fire allocation p0 at epoch t0. After some time, we can

get the moment vector M1 at time t1 and if the commander

changes the fire allocation to p1, then we start from M1 to get

M2 at epoch t2: Continuously varying fire allocation will be

another interesting subject for further research.
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Appendix 1: Derivation of Eqs. (7)–(9)

E Bern rRtdtð Þð Þ2jRt ¼R
h i

¼ 12�P Bern rRtdtð Þð Þ2¼ 1jRt ¼R
� �

¼ P Bern rRtdtð Þ¼ 1jRt ¼Rð Þ¼ rRdt

E Bern rRtdtð Þð Þ2
h i

¼
Z

R

E Bern rRtdtð Þð Þ2jRt ¼R
h i

P Rt ¼Rð ÞdR

¼
Z

R

rRdtP Rt ¼Rð ÞdR

¼ rdt

Z

R

RP Rt ¼Rð ÞdR¼ rE Rt½ �dt

For Eq. 9, it uses the following procedure that gives squared

dt.

E Bern bBtdtð ÞBern rRtdtð ÞjBt ¼ B;Rt ¼ R½ �
¼ 12 � P Bern bBtdtð ÞBern rRtdtð Þ ¼ 1jBt ¼ B;Rt ¼ Rð Þ
¼ 12 � PðBern bBtdtð Þ ¼ 1jBt ¼ BÞPðBern rRtdtð Þ
¼ 1jRt ¼ RÞ ¼ 12 � bBdt � rRdt ¼ brBR dtð Þ2

E Bern bBtdtð ÞBern rRtdtð Þ½ �

¼
Z

B

Z

R

E Bern bBtdtð ÞBern rRtdtð ÞjBt ¼ B;Rt½

¼ R�P Bt ¼ Bð ÞP Rt ¼ Rð ÞdRdB

¼
Z

B

Z

R

brBR dtð Þ2P Bt ¼ Bð ÞP Rt ¼ Rð ÞdRdB

¼ br dtð Þ2
Z

B

Z

R

BRP Bt ¼ Bð ÞP Rt ¼ Rð ÞdRdB

¼ brE BtRt½ � dtð Þ2
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Appendix 2: First and second moments
for a heterogeneous force (M-type Blue vs. N-type Red)

E Bi;tþdt

� �
¼ E Bi;t

� �
�
XN

k¼1

rkiE Rk;t

� �
dt

E Rj;tþdt

� �
¼ E Rj;t

� �
�
XM

l¼1

bljE Bl;t

� �
dt

E B2
i;tþdt

h i
¼ E B2

i;t

h i
� 2

XN

k¼1

rkiE Bi;tRk;t

� �
dt þ

XN

k¼1

rkiE Rk;t

� �
dt

E R2
j;tþdt

h i
¼ E R2

j;t

h i
� 2

XM

l¼1

bljE Rj;tBl;t

� �
dt þ

XM

l¼1

bljE Bl;t

� �
dt

E Bi;tþdtRj;tþdt

� �
¼ E Bi;tRj;t

� �
�
XM

l¼1

bljE Bi;tBl;t

� �
dt

�
XN

k¼1

rkiE Rj;tRk;t

� �
dt

E Bi;tþdtBj;tþdt

� �
¼ E Bi;tBj;t

� �
�
XN

k¼1

rkiE Bj;tRk;t

� �
dt

�
XN

k¼1

rkiE Bi;tRk;t

� �
dt

E Ri;tþdtRj;tþdt

� �
¼ E Ri;tRj;t

� �
�
XN

k¼1

bkiE Rj;tBk;t

� �
dt

�
XN

k¼1

bkiE Ri;tBk;t

� �
dt

Mt ¼ expm Vð ÞtM0

Mt ¼ mB;t;mR;t;mB2;t;mR2;t;mBB;t;mRR;t;mBR;t

� �T

where

mB;t ¼ E B1;t

� �
; . . .;E BM;t

� �� �

mR;t ¼ E R1;t

� �
; . . .;E RN;t

� �� �

mB2;t ¼ E B2
1;t

h i
; . . .;E B2

M;t

h i� �

mR2;t ¼ E R2
1;t

h i
; . . .;E R2

N;t

h i� �

mBB;t ¼ E B1;tB2;t

� �
;E B1;tB3;t

� �
. . .;E BM�1;tBM;t

� �� �

mRR;t ¼ E R1;tR2;t

� �
;E R1;tR3;t

� �
. . .;E RN�1;tRN;t

� �� �

mBR;t ¼ E B1;tR1;t

� �
;E B1;tR2;t

� �
. . .;E BM;tRN;t

� �� �

V ¼ M2 þ N2 þ 3M þ 3N þ 2MN

2


 �2

Matrix, sorted as Mt

V ¼

� �rM�N � � � � �
�bN�M � � � � � �

� rM�N � � � � �2rM�MN

bN�M � � � � � �2bN�MN

� � � � � � �2r M2�Mð Þ
2

�MN

� � � � � � �2b N2�Nð Þ
2 �MN

� � �bMN�M �rMN�N �b
MN�M2�M

2

�r
MN�N2�N

2

�

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA
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V is filled with 12 nonzero submatrices, where � is a 0-filled

matrix with a proper size. Here, the subscript for submatrices

denotes the size of those matrices. All the submatrices are

different, and it can be filled easily with the equations in

Appendix 1. For example, V for 2-type blue force versus

2-type red force is as follows: (M = 2, N = 2).
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V =
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∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙
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∙ ∙ ∙ ∙ ∙ ∙
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