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ABSTRACT ARTICLE HISTORY
There have been many research literature on traditional direct fire com- Received 5 September 2016
bat modelling. Recently, network centric warfare (NCW) is an active  Accepted 14 February 2017
research topic, in which information plays more important role than in KEYWORDS

the .tradltlonal warfare. It can be easily agreed that .thg use of mfor- Network centric warfare;
mation affects the combat results greatly. However, it is not straight- combat modelling; direct
forward to measure the effect of the information, thus decision making policy search

involving the impact of information during combat is a non-trivial task.

In this study, we propose a simple model for NCW modified from the

original Lanchester differential equation, which can be used as a basic

model for analysing characteristics of NCW. We derive some useful prop-

erties of the model in a special case. In order to solve the optimal

fire allocation decision under this model in general case, we propose

an algorithm based on reinforcement learning, followed by numerical

examples.

1. Introduction

Describing the warfare is a traditional and fundamental area in the military field. Lanchester [1]
suggested a foundational model with the differential equations. After his work, this domain grows
constantly; see overview of combat modelling [2,3]. Especially, modelling the modern warfare
including the concept of network centric warfare (NCW) or force multiplier is an emerging field.

The concept of NCW can be summarized into one phrase, “The importance of collecting and utiliz-
ing the information’; for an overview of NCW see [4-8]. Since the information is not only intangible,
but also hard to collect and utilize, the effort on developing and designing the metric for NCW is
addressed in [9]. Network attack can be interpreted differently. A discontinuous shock like an electro-
magnetic pulse attack is modelled in [10] and a malware spread analyse with an epidemic SIR model is
modelled in [11]. Not like traditional direct fire model, modelling the modern warfare becomes hard
because of complexity and ambiguity. So we propose an introductory model for NCW in Section 2
with differential equations. This model is intuitive and includes all the concepts of NCW and force
multiplier.

Beside, researchers are interested in the optimal decision making problems in military field as
more than modelling the battle. Since the purpose of battle is to win against the enemy, the optimal
fire allocation problem is natural to ask, and many studied about the weapon-target assignment prob-
lems [12-15]. Since there are many interpretations about the term NCW, there is no basic model like
Lanchester [1] in the field of modern warfare. In this paper, we interpret the network power as a signal
corpsman or an information processing centre that assist the attack forces to hit effectively. In other
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words, if the network power decreases, attrition rate of the attack forces will be weaken. So we suggest
the basic model with the differential equations based on this idea. Like any other works, we focus on
the optimal fire allocation within the view of blue force; what is the optimal fire proportion that max-
imizes the blue force at the end of battle. Our main contribution is that we proved some analytical
properties of this model for a restricted case and suggested the reinforcement learning technique to
solve the optimal allocation problem for complex cases.

In the next section, we present the basic model we suggest and prove some analytical properties
for the linear attrition rate function. And then we propose our main contribution, the optimal fire
allocation strategy using the reinforcement learning technique called the direct policy search (DPS)
algorithm. We present the numerical results for several cases and conclude with the promising future
works that can be done.

2. New model for NCW and properties

The key idea of NCW is the utilization of the network power. Not only the amount of information,
but also to utilizing the information is very important. On the original combat models, all the fighting
power or ability was denoted as some constants or independent variables which is called an attrition
rate or a kill rate. These models cannot apply the concept of force multiplier or NCW because of the
limitation of model structure. So we propose the introductory model for NCW as shown in Figure 1.
The main difference from the previous literature is that the attrition rate is represented as a function
of network power. Below are the notations that we use through this paper.

B = Blue force

A = Red force (Attack)

N = Red force (Network)

Ba = an attrition rate of B to A

BN = an attrition rate of B to N

fo(N) = anattrition function of A to B

bid = the fire allocating proportion of B to A

Since this is the introductory model, we assume only red forces have the network, N, and the blue
forces does not and only A can attack B with the attrition rate f, (N). We can represent Figure 1 as a

B T:fa

(1 —m)pn

Figure 1. Basic combat model including NCW.
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system of differential equations,

dB
T —fa(N)A, (1
dA
Tl —1 4B, (2)
dv = 1 B 3
E__( — y) BNB. (3)

2.1. Some useful properties if f, (N) is a linear function of N

If fu (N) = g + (ac — ag) (N/Np), which is a linear function of N, then we can derive useful prop-
erties of the optimal fire allocation. In here, o, denotes the fully-connected attrition rate of A and oy
denotes the fully disconnected attrition rate, where oy < .. The differential Equations (1)-(3) can
be rewritten as

dB N A @
Fri <0ld + (ac — Old)ﬁo)

— = B 5
dr = —1Ba ®)
dN

=~ (1= BB, ©)

Lemma 2.1: If 1, = 7 for any time t, where w € [0, 1], then one of 1 = 0 and w = 1 achieves the
optimal fire allocation to maximize the Blue force at any time.

Proof: Ifmr; = 7 isafixed constant over time t, this differential equation type is special type of second-
order nonlinear ordinary differential equation which is called a second-order autonomous system. Let
X() = fot B(s) ds, then Equations (4)-(6) can be rewritten as a second-order differential equation of
X(t):

X"(H) = —CiX*(t) + CX(t) — Cs, 7)
where

Cr — 7 (1 —m)BaBnlac — ay)

| =

No

C, — (1 —m)Bn(ae — ag)Ag + wBaacNy

2= No
C3 = OtcAo.

This form of differential equations has an implicit solution form, but it’s hard to use in practice
even though we fix the allocation . By simple calculation,

X(1) = \/-2CX3(0) + CX3(1) — GX(1) + Ca, )

where Cy is an integration constant. By definition of X(#), X (¢) is equal to B(¢). Since X (¢) is a positive
value and C;, C,, C5 are non-negative values, greater C, and lower C; and Cs; make X’(¢) a higher
value. We can easily derive the result that m = 0 or 7 = 1 is optimal; max, ¢[o,1) C2 = maxz¢(o,1} C2s
because C; is a linearly weight average of two numbers with respect to 7. Obviously, C; = 0 when
7 = 0or 1, and Cs is independent from 7. [ |
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When 7 = 0 or 1, we can explicitly solve Equation (8), because C; = 0:

1 C 1 C
B = (Bo - \/—é_z) exp(y/Cot) + 5 <Bo + J—é_z) exp(—v/Cat). 9)

Now we fix the fire allocation only during some time fraction. 7, _, ;- denotes the fixed allocation
during time t = 7 to 7.

Lemma 2.2: For any time 1) < Ty < T3, Ty -7, = g, 1, holds.

Proof: Lemma 2.1 shows that 7 = 0 or 1 maximizes the blue force at any time. We have to decide
what is the optimal fire allocation 7 either 0 or 1. As we mentioned earlier in proof of Lemma 2.1, C,
should be maximized. So the optimal fire allocation 7 * is

. _ 1 %f Cilr=0 < Calz=1, (10)
0 if Glr=0 > Cilrz=1,
where
Bn(ae — ag)A
Colrmo = = (1)
Calr=1 = Bac,. (12)

If C3|z=0 < Cz|x=1 holds and we choose the fire allocation 7 equals to 1, that means we are shoot-
ing A first rather than N. Since C;|7=¢ also decreases when A decreases, the relationship between
Calr=0 and Cy|r=; does not changes. So if we choose to shoot A first, then fire allocation does not
changes.

Similarly, if C3|7=0 > Cz|z=1 holds and we choose the fire allocation = equals to 0 which is shoot-
ing N first. C3|7=o increases N decreases, the relationship between C;|z—¢ and C;|7=; does not
changes and the fire allocation also does not changes. [

Since this is a combat modelling, each forces cannot be negative. Like the original Lanchester
equation, this differential equation also does not have such boundary. So Lemmas 2.1 and 2.2 holds
when B, A, and N is positive. If either A or N becomes 0, then the fire allocation becomes meaningless
because there are only one type of enemy left. Therefore, we have to consider more after either A or
N becomes 0 and choose the optimal fire allocation strategies.

Lemma 2.3: There are two optimal fire allocation strategies. (i) Shoot only A (m = 1) until A is elim-
inated if ((c — q)/Ba)No > ((ac + o)/ BN) Ao, (ii) Shoot only N (m = 0) until N is eliminated if
otherwise.

Proof: See Appendix. [

3. The optimal fire allocation strategy via DPS

We suggest some useful properties when f, (N) is a linear function of N in Section 2. If f, (N) is
nonlinear function of N, it is hard to derive useful properties about fire allocation like the linear
case. If the fire allocation f, (N) is a constant ay until time ¢, we can derive an explicit solution for
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differential equations:

B(t) = By cosh(y/7anBat) — Ao /% sinh(v/7anBat), (13)
A

A(t) = Ag cosh(y/manBat) — By, | Z—ﬂA sinh(y/mTanpBat), (14)
N

N(t) = Ny — Ao( ﬂ (cosh(mt) —1)

—Bo% sinh(y/maNpBat). (15)

So if we assume ay is calculated depends on current state N(f) and stays constant in small
time fraction dt, then we can change Equations (13)-(15) to a state-dependent Markovian form.
T3x3(mr, N(t)) denotes the transition matrix depends on 7 and current state N(¢) with the size 3 x 3:

B(t + dt) B(t)
A(t+dt) | = Tzx3(m, N(t)) | A(t)
N(t+dt) N(©)

i cosh(h) _ |y sinh(h) 0_

\ 7Ba
Toa(eNO) = | — [T sinhihy cosh(h) ol,  «e
N
1—m)BN . (1 —m)BN
—m smh(h) W(cosh(h) — ].) ]._

where h = \/mayBadt.

The fire allocation 7 can be interpreted as an action at each state [B(t), A(f), N(¢)]'. The problem
seems typical case for Markov Decision Process, but since the state are continuous and the transition
matrix is depends on the current state, it is hard to get an optimal action with a backward induction.
Reinforcement learning is powerful tool to solve such problem with forward calculation. We use the
DPS method [16] which is useful to get the policy that maximizes the expected return.

3.1. DPS by gradient ascent with logit-normal policy model

This method finds the policy model that maximizes the expected return by gradient ascent. Let
7(a|s,0) is the policy parameterized by 6 which is the conditional probability density of a in state s.
And h is the scenario of length T then, the expected return J for policy parameter 0 is defined as

T-1
J(0) = Epnio) [Z r(st, at,St+1)i| = /p(h [0)R(h) dh, (17)
t=1
T-1
p(r10) = p(sy) [ | plsita |san)m(a | s:,0). (18)

t=1

The purpose of this method is to the the optimal policy parameter * maximizes the expected
return J(0). Gradient ascent is a good algorithm to find such parameter.

0 <—0+e\/]©) (19)
0
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V¢ J(8) denotes the gradient of expected return and expressed as

T-1
\/7(0) = Eynj0) [Z \log(at |st, 9>R<h)} (20)
0

t=1 0

and since p(h | 0) is unknown, we can rewrite using the empirical average as

N
Viey=<>"
0

n=1 t=1
where h,, is the scenario for nth experiment.
For choosing the policy model 7w (a | s,0), the Gaussian policy model is a popular choice. But, for
our case, an action should be bounded between 0 and 1, so Gaussian policy model is not proper
model. So we suggest a logit-normal policy model which is

T-1

Zl =

\/ log 7 (as | st O)R(), (21)
0

1 1 (ogit(a) — n'¢(s))?
n(a|s,,u,o)-mmexp<— 202 ) (22)
The policy gradients are
0q) — 1, T
Vum(als o) = CED I D 4 ) (23)
(a) — 1, T 2 _ 42
Vom(als, it,0) = (ogita) Z;p e > (24)

where ¢ (s) is the basis function of s. In this research, we use ¢ (s) = [1 s*] = [1 B> A> N? BA BN AN].
We are dealing with the interactive situations between B, A and N, therefore we use the square terms
of each states and the interaction terms between each states.

3.2. Numerical experiments for the linear f, (N)

We prove the optimal fire allocation for the linear case f, (N) = oy + (o — ag) (N/Np) in Section 2.
We conduct three numerical experiments using the DPS algorithm and compare to the theoretical
optimal values. Table 1 shows the initial parameter settings and the theoretical optimal value for each
experiment settings, and also the value obtained from the DPS algorithm. In this context, the value
means ‘the alive blue forces at the end of the battle’.

Figures 2-4 show the changes in the each forces, and the fire allocation over time for each exper-
iment settings. Commonly, the algorithm does not know how to allocate the fire to maximize the
blue force before learning. However, after hundreds iterations for learning, they learn almost exactly
how to allocate the fire to maximize the blue force at the end of battle. As we wrote in Table 1, there
are small differences between the theoretical values and obtained value from the algorithm. We use
the term ‘Learning curve’ for changes in sample average value of blue force at the end of battle over
time in figures. Learning curve in Figures 3 and 4 are the common shape which shows gradually
increasing, but learning curve in Figure 2 is somehow different. It moves like a step function at the

Table 1. The experiment settings for the linear f, (N).

Experiments By Ao No o ag Ba Bn Optimal value DPS value
1 50 60 10 0.2 0.07 0.2 0.15 11.0136 10.8543
2 50 50 20 0.2 0.04 0.2 0.15 19.2483 18.5618

3 70 80 20 0.2 0.1 0.3 0.2 24.6512 24.0241
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Before Learning with Value = 0 After Learning with Value = 10.8543
sofe — 50 -~ 1o
. e 81 o
8 Al ¢ s
S —n|| &
- - g6
0 — = 0 <
0 2 4 6 8 10 0 5 1 15 X
Time Time 5
1 1 2
“05 05 &
2
0 [ 4
) 2 4 6 8 10 0 5 10 15 o 100 20 300 00 500 00
Time Time Hteration

(a) (b) (c)

Figure 2. Changes of the each forces, the fire allocation 7; and the sample average value on linear experiment setting 1 (DPS value
after 590 iterations = 10.8543). (a) Before learning, (b) after learning and (c) learning curve.

Before Learning with Value = 0 After Learning with Value = 18.5618 I

0 5 10 15 300 400 500 600 700 800 200

Time Time lteration

(a) (b) (0)

Figure 3. Changes of the each forces, the fire allocation 7; and the sample average value on linear experiment setting 2 (DPS value
after 820 iterations = 18.5618). (a) Before learning, (b) after learning and (c) learning curve.

Before Learning with Value = 0 Before Learning with Value = 24.0241
— —B 20
g 8 850 A
5 Al s N
Cf— N i e
0 I —— 0 g
0 2 4 6 8 0 2 4 0 12 14 g1
Time Time §
1 1 z
=05 =05 WI\,\N}
0 0 ! . L L . L L
0 2 4 6 8 0 2 4 6 8 10 12 14 “o 100 200 300 400 500 600 700
Time Time Hteration

(a) (b) (c)

Figure 4. Changes of the each forces, the fire allocation 77; and the sample average value on linear experiment setting 2 (DPS value
after 820 iterations = 24.0241). (a) Before learning, (b) after learning and (c) learning curve.

end of iterations. Since DPS algorithm is using the gradient ascent algorithm to update the policy
parameter, it will easily converges to the local maximum value. We can interpret that the algorithm
had been converged to the local maximum and it searched for the better value for long iterations
and finally, it found the better values and moves to that point. This step-like behaviour depends on
hyper-parameters in the learning algorithm which controls the exploitation and the exploration.

3.3. Numerical experiments for the nonlinear f, (N)

As we see in a previous subsection, the DPS algorithm helps to reach to theoretical optimal value for
the linear attrition rate function. In this subsection, we conduct 2 experiments with the nonlinear
attrition rate functions fo (N). We do not know the theoretical optimal values like the linear case, but
we can deduce from the linear case that this algorithm will reach near to the optimal value and optimal
policy. Table 2 shows the 2 experiment setting for the nonlinear case. We fix the initial parameters
same as experiment setting 2 in the linear case and change only the attrition rate function f, (N).
The values obtained from the DPS changes dramatically compare to linear case. The optimal value
of experiment setting 2 in linear case was 18.5618. But after we change the attrition rate function fy (N)
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Table 2. Experiment settings for the nonlinear f, (N).

Experiments By Ay Ny «ac oy Ba Bn DPS value

Commonsetting 50 50 20 02 0.04 02 0.15

1 (Logarithmic) fu(N) = g + (¢ — ag) |og(9Nﬂ0 +1) 0

2 (Exponential) fo(N) = ay exp(ln(g—;)(Nﬁo)z) 30.3291
Before Learning vith Value = 25,6944 Before Learning with Value = 30.3291

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 0 200 400 600 800 1000 1200 1400 1600 1800
Time Time lteration

(@) () ©

Figure 5. Changes of the each forces, the fire allocation 7 and the sample average value on nonlinear experiment setting 2 (DPS
value after 1780 iterations = 30.3291). (a) Before learning, (b) after learning and (c) learning curve.

to logarithmic and exponential function, the value changes to 0 and 30.3291, so it will be important
to design the attrition rate function well to predict and make the optimal decision. Figure 5 shows
the same plots as previous for the exponential case. Since the logarithmic case always have value 0 for
any allocation, so it does not have the optimal fire allocation like any others. We might change the
definition of ‘value’ to ‘B — (A7 + Nt); The difference of the forces at the end of the battle’. For new
definition, the algorithm might lead to minimize the difference and try to find at least good strategy
that maximize the casualties. This will be studied in further research.

4. Conclusion

In this paper, we suggest the new differential equation model that includes the framework of NCW
and force multiplier. By solving this equation, we proved some useful properties for the special case;
the linear attrition rate function case. Main contribution is that we adopt the reinforcement learning
technique called the DPS and modify the model to solve the optimal fire allocation problem. We show
that this algorithm works well in the linear case which has known optimal value, and conduct 2 more
experiments for nonlinear case.

Our goal has been to introduce the control community about the application of military field.
One next step is to conduct more experiments with the complex model, for example, a model that
includes the defense assets or new attrition property like fire range. This will bring out new behaviours
and explanations that can advise the commander to order actively. Another way will be considering
stochastic effects in the model. In our model, we exclude the stochastic effects to clarify the situation
and derive some analytical properties. We strongly expect that the stochastic term will affects the
optimal fire allocation a lot and totally changes the outcome of the battle. Of course, since the direct
policy algorithm is sensitive to policy model and the basis function of s, ¢ (s), it will be great work to
stabilize the algorithm and make robust.

Disclosure statement

No potential conflict of interest was reported by the authors.



2478 (&) D.KIMETAL.

Funding

This work was supported by the Defense Acquisition Program Administration and Agency for Defense Development
under the contract UD140022PD, Korea.

References

[1] Lanchester FW. Aircraft in warfare: the dawn of the fourth arm. London: Constable Limited; 1916.

[2] Bracken J, Kress M, Rosenthal RE, editors. Warfare modeling. Alexandria, VA: MORS; 1995.

[3] Tolk A. Modeling effects. In: Engineering principles of combat modeling and distributed simulation. Hoboken,
NJ: John Wiley & Sons; 2012 p. 145-170.

[4] Powell DS. Understanding force multipliers: the key to optimizing force capabilities in peacetime contingency
operations. Army Command and General Staff Coll Fort Leavenworth KS school of Advanced Military Studies;
1990.

[5] Smith E. Effects based operations. In: Applying network-centric warfare in peace, crisis and war. Washington, DC:
DoD CCRP; 2002.

[6] Smith CR, Colonel L. Network centric warfare, command, and the nature of war. In: Land warfare studies centre;
2010.

[7] Tunnell HD. Network-centric warfare and the data-information-knowledge-wisdom hierarchy. Military Rev.
2014;94(3):43-50.

[8] Tunnell HD. The US Army and network-centric warfare a thematic analysis of the literature. In: Military
communications conference, MILCOM 2015-2015 IEEE. IEEE; 2015.

[9] Beck ], Moon T, Van AC, et al. Knowledge superiority parameter-a metric for network centric warfare (NCW).
In: Defence science and technology organisation (Australia) defence systems analysis div. 2003.

[10] Schramm HC. Lanchester models with discontinuities: an application to networked forces. Military Oper Res.
2012;17:59-68.

[11] Schramm HC, Gaver DP. Lanchester for cyber: the mixed epidemic-combat model. Nav Res Logist.
2013;60(7):599-605.

[12] Ahuja RK, Kumar A, Jha KC, et al. Exact and heuristic algorithms for the weapon-target assignment problem.
Oper Res. 2007;55(6):1136-1146.

[13] Azak M, Bayrak AE. A new approach for threat evaluation and weapon assignment problem, hybrid learning with
multi-agent coordination. In: Computer and information sciences, 2008. ISCIS’08. 23rd international symposium
on. IEEE; 2008.

[14] Lee Z-J, Su S-F, Lee C-Y. Efficiently solving general weapon-target assignment problem by genetic algorithms with
greedy eugenics. IEEE Trans Syst Man Cybern B Cybern. 2003;33(1):113-121.

[15] Paradis S, Benaskeur A, Oxenham M, et al. Threat evaluation and weapons allocation in network-centric warfare.
In: 2005 7th international conference on information fusion. Vol. 2. IEEE; 2005.

[16] Sugiyama M. Statistical reinforcement learning: modern machine learning approaches. Boca Raton, FL: CRC
Press; 2015.

Appendix. Proof of Lemma 2.3
If 7 = 0 at first, then Equations (4)-(6) become first-order linear ODE which is,

dB N

m = - (06,1 + (ac — ad)ﬁo) Ao, (A1)
dN

Frin —BNB. (A2)

From this ODE, we can calculate B(ty—) when N (ty—¢) becomes 0,

Bltyeo)? = B2 — 9D 4 N (A3)
BN
If N is eliminated before B is eliminated, now B concentrates the fire to A then,

dB
— = —ayA, A4
& a4 (A4)

dA
= —pBaB. (A5)

dr
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Table A1. The optimal fire allocation 7 *.

B, <0 B:. ., >0

B2, <0 Blue loses Shoot N first (r* = 1)
B2 ,>0 Shoot A first (7* = 1) Bi_o > Bosq, w* = 1.
B1—>0 < BO—>1/7T* =0

We can calculate By_,; when A eliminates,

(ot + ag) o4
Bi =B T AN, - -2 A3 (A6)
BN Ba
On the other hand if 7 = 1 at first, then Equations (4)-(6) also become first-order linear ODE which is,
dB
E = —OICA, (A7)
dA
— = —fB4B. A8
i Ba (A8)
From this ODE, we can calculate B(t4—¢) when A(t4—¢) becomes 0,
B(taco)? = B2 — =< 42, (A9)
Ba

Since A is eliminated, B concentrates the fire to N. But Equation (A7) becomes 0 and it is obvious that B_,o when
N eliminates is same as B(t4—q).

B}, = B(tazo)® = B} — /‘;‘—“Ag. (A10)
A

Then we can make the optimal fire allocation chart as follows (Table A1l).
Simplify the relationship between B;_,¢ and By, 1,
B1—0 > Bo—1
(orc + Old)NO - (orc — ad)A
BN Ba

(i) Shoot only A (r = 1) until A is eliminated if ((etc — @q)/Ba)No > ((ac + aq)/BN)Ao, (ii) Shoot only N (7 = 0)
until N is eliminated if otherwise.

0- (A11)
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