
This article was downloaded by: [143.248.82.27] On: 09 March 2021, At: 03:47
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Applied Analytics

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Optimizing the Multistage University Admission Decision
Process
Donghyun Kim, Namyong Kim, Junoh Cho, Hayong Shin

To cite this article:
Donghyun Kim, Namyong Kim, Junoh Cho, Hayong Shin (2019) Optimizing the Multistage University Admission Decision Process.
INFORMS Journal on Applied Analytics 49(6):422-429. https://doi.org/10.1287/inte.2019.1009

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/inte.2019.1009
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


INFORMS JOURNAL ON APPLIED ANALYTICS
Vol. 49, No. 6, November–December 2019, pp. 422–429

http://pubsonline.informs.org/journal/inte ISSN 0092-2102 (print), ISSN 1526-551X (online)

Optimizing the Multistage University Admission Decision Process
Donghyun Kim,a Namyong Kim,a Junoh Cho,a Hayong Shina

aKorea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Contact: dhk618@kaist.ac.kr, https://orcid.org/0000-0002-5049-821X (DK); steen@kaist.ac.kr (NK); jocho@kaist.ac.kr (JC);
hyshin@kaist.ac.kr (HS)

Received: August 7, 2017
Revised: February 22, 2018; November 29,
2018; April 13, 2019
Accepted: April 17, 2019
Published Online in Articles in Advance:
November 1, 2019

https://doi.org/10.1287/inte.2019.1009

Copyright: © 2019 INFORMS

Abstract. The admission decision process is an important operational management prob-
lem for many universities. Admission control processes may, however, differ among
universities. In this paper, we focus on the problem at Korea Advanced Institute of Science
and Technology (KAIST). We assume that individual applications are evaluated and
ranked based on paper evaluations and (optional) interview results. We use the term
“university admission decision” to mean determining the number of admission offers that
will meet the target number of enrollments. Themajor complexity of an admission decision
comes from the enrollment uncertainty of admitted applicants. In the method we propose
in this paper, we use logistic regression with past data to estimate the enrollment prob-
ability of each applicant. We then model the admission decision problem as a Markov
decision process fromwhichwe formulate optimal decisionmaking. The proposedmethod
outperformed human expert results inmeeting the enrollment target for the validation data
in 2014 and 2015. KAIST successfully used our method for its admission decisions in
academic year 2016.

History: This paper was refereed.
Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea funded by the Ministry of Science and ICT [Grant
2017R1A2B4006290].
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Making a decision about admitting applicants to a
university is an important operational manage-
ment decision problem at a university (Chade et al.
2014). Because admission control processes may differ
among universities, we present the problem that Korea
Advanced Institute of Science and Technology (KAIST)
faced. Based on the capacity of facilities and academic
programs, KAIST’s target is to enroll about 750
freshmen each year. The university evaluates indi-
vidual applications and ranks them based on the
applicants’ documents and interviews. In this paper,
the term “university admission decision” (UAD) re-
fers to determining the number of admission offers a
university should make to meet its target number of
enrollments. The main complexity of UAD comes
from the enrollment uncertainty of the admitted ap-
plicants. Unlike many other universities in Korea
that meet their enrollment target after many rounds
of offering admission to candidates on a waiting list,
KAIST uses only two rounds of admission offers
(Figure 1). KAIST uses only two rounds as the result of
a strategic decision that goes beyond the scope of this
paper. When the gap between the target and the ac-
tual enrollment reached about 10% of the target in
2014, the KAIST admissions office and the authors
performed a study of the UAD problem based on

past data. We present that study and its results in
this paper.
Below, we explain the KAIST admissions and en-

rollment process (Figure 1).
• Each applicant receives an evaluation score

based on a review of the documents that applicant has
submitted and an optional interview.
• Applicant admissions are determined based on the

evaluation scores in descending order. The number of
admissions offers generated from the UAD process
determines the admission of individual applicants.
• UAD comprises two stages. In the first UAD

stage, we determine the number of admissions (A1)
and the size of the waiting list (W). Applicants ranked
lower than (A1+W) are rejected. Those who receive an
admissions offer in the first UAD (called the A1 group
hereafter) may choose to enroll (or not), because they
usually have applied to multiple universities, and
their preferences differ. However, decisions to enroll
are not final. Later, they can drop out of the tentative
enrollment list by canceling their registration at a
small penalty cost.
• After the initial tentative enrollment (also called

registration), KAIST conducts the second UAD stage,
which determines the number of admissions (A2)
from the waiting list.
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Tentatively enrolled applicants may drop out until
the cutoff date, which is usually the start of the new
academic year. Those who remain enrolled until that
date constitute the actual enrollment. The objective is
to as closely as possible match the number of actual
enrollments to the target. The penalty for shortage
and overage may differ. The target number is care-
fully chosen each year by considering the capacity of
the university (e.g., dormitory, laboratory, and fac-
ulty size) and some strategic factors (e.g., government
policy and long-term policy change plan).

A few related studies on the applicant admissions
process are available. Rebbapragada et al. (2010)
quantified the value of an applicant to a university
using data-mining techniques by predicting the ap-
plicant’s freshman grade point average. Using these
values, they maximized the overall quality of ad-
mitted applicants by using revenue-management
techniques. Walczak and Sincich (1999) compared
the results of a neural network model for applicant
enrollment decision modeling with the results of

logistic regression analysis to demonstrate improve-
ments that can be obtained by using neural networks.
Maltz et al. (2007) implemented an enrollment model
using a financial-aid matrix and other predictors
to optimize enrollment by using a logistic regres-
sion function and a financial objective function. To the
best of our knowledge, no study has built a sequen-
tial decision-making model and used enrollment
probability to solve the optimal decision problem
for UADs.
From a preliminary study of past enrollments, we

found that the individual enrollment probability
varies significantly, and there are some predictable
patterns in enrollment probability as a function of
applicants’ attributes, such as evaluation scores, high
school types (e.g., public, private, or special purpose),
and home location. Figure 2 compares the conven-
tional UAD of human experts with the overall struc-
ture of the UAD support system presented in this
paper. Key differences are that the proposed system
predicts individual enrollment probabilities rather

Figure 1. (Color online) The KAIST Admission and Enrollment Process Flow

Figure 2. (Color online) We Compare the Overall Structure of the KAIST UAD Support System to the Conventional Process
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than average probability, and it uses them for optimal
UAD. The proposed UAD support system comprises
two phases. In the training phase, the enrollment
probability prediction model learns parameters from
past application and enrollment data by using logistic
regression. In the decision phase, we estimate the
individual enrollment probability for each applicant
in the current year. Then, we formulate this phase as a
two-stage decision problem and solve the problem to
find the optimal number of admissions to minimize
the expected loss. In the sections below, we explain
each phase in detail and discuss the results.

Enrollment Probability Estimation
In this section, we describe the prediction of enroll-
ment probability using logistic regression (Cox 1958).
In the KAIST conventional UAD, the overall enroll-
ment probability was computed from the enrollment
records of the previous years. Hence, if the over-
all enrollment probability was 70% and the target
number was 600, then the number of admissions was
naively determined to be 857 (600/0.7). To increase
the prediction accuracy, experts in the admissions
office grouped applicants based on their key attri-
butes, such as high school type, and computed the
enrollment probability for each group. In our pro-
posed method, we estimate individual enrollment
probability to overcome the seemingly obvious limit
of the conventional approach.

We collected the application-enrollment data set
for 3 years (2013–2015) to train the prediction model.
In the original data set, each applicant record has
about 20 attributes. To avoid overfitting, we used the
Lasso procedure, as explained by Tibshirani (1996).

Figure 3(a) shows a trace plot of logistic regression
coefficients corresponding to independent variables
(i.e., regressors). As the Lasso regularization pa-
rameter λ grows (from right to left in the graph), the
regression coefficients gradually vanish. Figure 3(b)
shows the 10-fold cross-validated deviance statistics
over λ. The curve is the average of the deviance for
each λ, shown with ±1 standard deviation. The right
circle in the curve is where the deviance is minimum,
and the left circle is the closest point to the minimum
deviance plus one standard deviation. We select re-
gressorswith nonzero coefficientswhenλ is set to that
of the left circle point, as suggested in the one-stan-
dard-error rule byKrstajic et al. (2014). As a result, four
variables are chosen: evaluation score, scholarship,
home location, and high school type. High school
type is a categorical variable of four types. For con-
fidentiality reasons, we represent each type as a bi-
nary dummy variable (i.e., high school types 1–4). So,
we select seven variables.
We also examined the interaction effects of inde-

pendent variables by including product terms (such
as multiplication of evaluation score and scholar-
ship). However, adding higher-order terms did not
meaningfully improve the prediction accuracy. By
reapplying logistic regression using only the seven
selected variables, we obtained the model for the
enrollment probability of the ith applicant, as shown
in Appendix A. By applying the logistic regression
model trained with the past 3 years’ data to the
current applicants, we obtained their predicted en-
rollment probability. At this stage, human experts in
the admissions office can intervene by subjectively
adjusting the probability to reflect changes in the

Figure 3. (Color online) The Graphs Illustrate Variable Selection for the Enrollment Probability Model

Notes. (a) Trace plot of coefficients fit by Lasso. (b) Cross-validated deviance of Lasso fit.
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business environment. Although the UAD support
system provides some functionality to support this
expert intervention, we omit the details for brevity.

University Admission Decision Problem
Figure 4 shows theflowof the two-stage optimalUAD
decision-making process. The rhombus node in the
diagram denotes a decision-making node, and the
circle node is the enrollment-state vector representing
the enrollment of each applicant at each decision
stage. Initial state E0 is a zero vector because no
student has yet enrolled. Here, E1 is the state vector
after the first-stage decision. Note that the enrollment
at this time is only tentative because applicants can
cancel their registration at any time. Here, E2 is the
enrollment-state vector at the final cutoff date (after
the second-stage decision, second enrollment, and
cancellations). Let |E2| denote the final number of
enrollments. Our goal is to make |E2| as close to the
target as possible.

The decision variables are the number of admis-
sions (A1) and the size of the waiting list (W) for the
first stage and the number of second-stage admissions
(A2) from the waiting list for the second stage. Ap-
plicants who are admitted in the first and second
stages are called the A1 group and A2 group, re-
spectively. The A2 group should clearly be a subset of
the waiting list.

One may think that the first-stage decision can be
made easily by setting A1 = target and a very large W
(e.g.,W = the rest of the applicants). SettingA1 smaller
than the target is clearly unnecessary. If we set A1 =
target, which is the minimum value for A1, the en-
rollment will certainly be smaller than the target, and
we will lose the opportunity to see the enrollment
results for some applicants who are ranked lower
than A1. However, if A1 is too large, we are in danger
of overage. Similarly, if we choose a small value forW
and the number of enrolled applicants in the first
stage is fewer than expected, achieving the target will
be impossible. On the other hand, if we choose too
large a value for W at the first stage, it may harm the
university’s reputation factor. Thus, we need some
quantitative definition of the penalty function. The
total penalty function is the sum of the two types of

penalties involved. One is the reputation penalty
shown in Figure 5(a), and the other is the gap pen-
alty shown in Figure 5(b). We set a very simple rep-
utation penalty function as the linear function (see
Figure 5(a)). From our testing, we found that the
result is not sensitive to the slope of the reputation
penalty. The gap penalty function captures the pen-
alty related to the gap between |E2| and the target.
Because KAIST is a nationally funded university that
does not rely substantially on tuition from students,
the underage penalty is considered smaller than the
overage penalty. As Figure 6(b) shows, we set the
overage penalty to be twice as large as the shortage
penalty until target + α, after which the overage pen-
alty again doubles. (In the Experiments section, we
used α = 0.05*target.) Note that a smallerWwill result
in a smaller reputation penalty, but it may cause a
larger gap penalty.
Although we cannot say conclusively that the

penalty function in Figure 5 is the best choice, it is
simple and captures the essential elements well.
Admission professionals generally agree with the
choice of a penalty function. Another choice of pen-
alty functionwould require only a small change in the
UAD support system.
To determine the optimal values of decision vari-

ablesA1,A2, andW tominimize the total loss function,
we formulate this problem as a two-stage dynamic-
programming (DP) problem, which is an effective
way to solve such sequential decision-making prob-
lems (Bertsekas 1995). A DP problem contains states,
actions, a reward (loss) function, and a transition
function. In Appendix B, we explain the formulation
in detail, and we highly recommend reading this
appendix to better interpret our experiment results.

Experiments
We first validated the model using data from 2013,
2014, and 2015 academic-year admissions; these sets
of data contained 1,700; 1,600; and 1,600 samples,
respectively. We made a logistic regression model
using these applicant data and compared the per-
formance of the conventional and proposed ap-
proaches. The conventional approach uses the past
average enrollment rate to estimate the expected

Figure 4. The Flow of the Two-Stage Optimal UAD
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number of enrollments. The proposed approach uses
individual enrollment probabilities from the logistic
regression model to estimate the expected number of
enrollments. We conducted two validation tests for the
following purposes: (1) to predict 2014 admissions by
using 2013 data; and (2) to predict 2015 admissions by
using 2013 and 2014 data. In these tests, we predicted
the enrollment probability (pi) of each applicant based
on the past data.

Figure 6 shows the number of admissions offered
(i.e., accepted applicants) in relation to the number of
enrollments. The dashed line (Conventional) repre-
sents expected enrollments when a constant enroll-
ment probability (pi = p) is used. The dotted curve
(Proposed) represents expected enrollments when
individual enrollment probability (pi) is used. When
k applicants are accepted, the expected number of
enrollment is the sum of pi for i = 1...k. The solid
black curve shows the number of actual enrollments

obtained by counting the true enrollments up to rank k
applicants. Note that the “real curve” and the “pro-
posed curve” show a slightly convex downward
shape, which indicates that higher-ranked applicants
have lower enrollment probabilities in general. This
coincides with the observation that applicants with
higher scores tend to receive more admissions offers.
Overall, the validation tests showed that the indi-
vidual enrollment probability estimate matches real
behavior.
We used this estimated probability to determine the

number of admissions in the first and second ad-
mission stages. Before applying UAD to a real situ-
ation (2016 and 2017), we performed back-testing to
2014 and 2015 data. Table 1 shows the back-testing
results of the UAD system decisions in comparison
with human expert decisions.
Let us define the relative gap� (|E2 |−Target)/Target

as the measure of performance. For the 2014 test, the

Figure 5. The Penalty Functions We Used in Our Markov Decision Process Formulation

Notes. (a) Reputation penalty: f1(W). (b) Gap penalty: f2(E2).

Figure 6. (Color online) Two Validation Test Results Show Our Proposed Method Outperforms the Conventional Method in
Predicting Student Enrollment Trends

Notes. (a) Estimating 2014 admission results from 2013 data. (b) Estimating 2015 admission results from 2013 and 2014 data.
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relative UAD gap was −1.94%, whereas that of human
expert decisions was −0.93%. For the 2015 test, human
experts showed a very large relative gap of +9.68%,
which could have been improved to −0.65% had they
used our UAD system. Based on these validation results,
we were confident that the UAD support system can
improve admissions decisions. Therefore, the KAIST
admissions office used the UAD support system for its
2016and2017decisions.Wepresent the results inTable 2.

We determined that our proposed system works
better than the existing system because it uses both
probabilistic estimation and decision making. In
comparison with existing empirical and qualitative
methods, it predicts an applicant’s enrollment proba-
bility better than the conventional method and also
optimally solves the problem with a clear objective
that minimizes the loss function as it approaches the
target.

Conclusion
In this paper, we present two ideas to solve the UAD
problem. First, we use logistic regression to obtain
the enrollment probabilities of individual applicants.
We then formulate the admission problem as a two-
stage DP using this probability as the state-transition
probability. We designed the loss functions by meet-
ing with admissions experts. The UAD support sys-
tem also includes manual intervention methods for
adjusting enrollment probabilities to reflect changes
in environmental factors that the probability model
cannot know.

We performed validation tests first by using past
data. Subsequently, KAIST has used the UAD sup-
port system for its admissions decisions since 2016.
We believe that it is worthwhile to report and share
our methodology and the results, and we hope that
our work can provide useful insights for practitioners
with similar problems.

Appendix A. Logistic Prediction Model for the
Enrollment Probability of the
ith Applicant

As we mention above, adding higher-order terms did not
meaningfully improve the prediction accuracy; therefore,
we decided to use the following simple model with the
coefficients shown in Table A.1 for the enrollment proba-
bility of the ith applicant:

P(Xi) � 1
/(
1 + e−β

TXi

)
,

where Xi is the attribute vector of the ith applicant, and β is
the coefficient vector. Table A.1 shows the regressors (se-
lected variables) and corresponding coefficients. Human
experts in the admissions office confirmed the validity of the
logistic regression model we obtained.

Appendix B. Markov Decision Process Formulation
for the UAD Problem

Because we formulate the UAD problem as a two-stage
dynamic-programming problem, it must contain states,
actions, a reward (loss) function, and a transition function.
The state at each stage t is defined as Et = (e1,t,..., eN,t), where
ei,t = 0 or 1 for all i and t = 0, 1, 2. Here,N is the total number
of applicants, and ei,t = 1 means that the ith applicant has
enrolled status at stage t; otherwise, it is 0. The initial state
E0 is a zero vector (i.e., ei,0 = 0).

Please note that our enrollment probability model in
Phase 1 (i.e., the training phase) predicts the final enroll-
ment probability pi = P(ei,2 = 1) when an applicant has been
admitted, because our enrollment data are the final en-
rollment data. However, in the following DP formulation,
we must know the initial enrollment probability qi = P(ei,1 =
1|A1) and the retention probability ri = P(ei,2 = 1|ei,1 = 1) for
each i in the A1 group. Although we would have preferred
to be able to estimate individual qi and ri directly from the
data, no appropriate data (i.e., initial enrollment data and
retention data for individual applicants) were available

Table 1. Back-Testing UAD Results Using Historical Data Shows that UAD Outperforms
the Decisions of Human Experts

Training set Test set Target

UAD system Human expert decision

A1 W |E1| A2 |E2| A1 W |E1| A2 |E2|

2013 2014 670 1,206 64 690 62 657 1,162 61 659 61 637
2013 and 2014 2015 620 1,109 62 702 18 616 1,203 148 783 0 680

Table 2. Admission Decisions Based on Using the UAD
Support System in 2016 and 2017

Academic year Targets

Results

Relative gapA1 R |E1| A2 |E2|

2016 570 996 75 627 35 581 1.93%
2017 550 952 91 584 62 579 5.27%

Table A.1. The Regressors and Coefficients of the
Enrollment Probability Estimation Model

Xi β

Xi0 = 1: constant 0.0436
Xi1: evaluation score (0~20) −0.4977
Xi2: scholarship (0 or 1) 3.5890
Xi3: home location (0 or 1)—near Seoul or not −0.3757
Xi4: high school of type 1 (0 or 1) 2.1379
Xi5: high school of type 2 (0 or 1) 1.2477
Xi6: high school of type 3 (0 or 1) −0.2705
Xi7: high school of type 4 (0 or 1) −1.2774
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during this study.However,we know the aggregated initial
enrollment numbers; that is, among A1 admissions offered,
EI
1 enrolled initially and EF

1 were part of the final enrollment.
For notational simplicity, let ei,2 denote the event (ei,2 = 1)
and ei,2 denote the complementary event (ei,2 = 0).

By applying Bayes’ rule, we get

ri � P(ei,2 |ei,1) � P(ei,1 |ei,2)P(ei,2)
P(ei,1)

� P(ei,1 |ei,2)P(ei,2)
P(ei,1 |ei,2)P(ei,2) + P(ei,1 |ei,2)P(ei,2)

� P(ei,2)
P(ei,2) + P(ei,1 |ei,2)(1 − P(ei,2))

� pi
pi + αi(1 − pi) for i � 1, . . . ,A1.

Note that we use an obvious equation: P(ei,1|ei,2) = 1. The
unknown factor in the above equation is αi � P(ei,1 |ēi,2) for
the A1 group. Here, αi is the probability that applicant i has
initially enrolled, given that applicant i is not part of the final
enrollment. Ifwe assume that αi is the same for all applicants,
we can compute this with the aggregate admission, enroll-
ment, and retention information, A1, EI

1, and EF
1 , as follows:

αi � P(ei,1 |ei,2) � P(ei, 1 ∩  ei,2)
P(ēi,2) ≈ #(ei, 1 ∩  ei,2)

#(ēi,2) � EM
1 − EF

1

A1 − EF
1
� α.

With this, we can compute retention probability ri and
initial enrollment probability qi:

ri � pi
pi + α(1 − pi)

qi � P(ei,1 |A1) � P(ei,2 |A1)
P(ei,2 |ei,1) �

pi
ri
.

For convenience, we split E2 into the state vectors for the
A1 group and A2 group—that is, E2 = (E21, E22), where E21 �
(e1,2, . . . , eA1,2) and E22 � (eA1+1,2, . . . , eA1+A2,2). By assuming the
independence of the enrollment decision for each applicant,
the joint probabilities, P(E1|A1), P(E21|E1), and P(E22|A2) can
be factored as follows:

P(E1 |A1) � ∏
i≤A1

qiei,1 (1 − qi)1−ei,1 ,
P(E21 |E1) � ∏

i≤A1

P(ei,2 |ei,1 � 1) � ∏
i≤A1

riei,2 (1 − ri)1−ei,2 ,
P(E22 |A2) � ∏

i∈≤A2−group
P(ei,2) � ∏

i∈≤A2−group
pie2,1 (1 − pi)1−e2,1 .

Using the above state-transition probability, we can
formulate the DP problem to minimize the total loss L12(A1,
W) in the first stage, and L2(E1, A1, W, A2) in the second
stage. Here, L2 is the expected gap penalty ( f2), and L12 is the
sum of the reputation penalty ( f1) and the expected L2. The
final DP formulation is shown below. We can solve this
optimization problem using backward induction.

Stage 1 (First Decision)

(
A*

1, W
*) � argmin

A1,W
L12(A1,W)

L12(A1,W) � f1(W) +∑
∀E1

L2
(
E1,A1,W,A*

2

)
P(E1 |A1).

Stage 2 (Second Decision)

A*
2 � argmin

A2

L2(E1,A1,W,A2)
L2(E1,A1,W,A2) �

∑
∀E21

∑
∀E22

f2(E2)P(E21 |E1)P(E22 |A2).
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