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ABSTRACT
We propose to use information regarding the fab’s future state for Overhead Hoist Transport (OHT)
dispatching, which is named as ‘predictive dispatching’ in this paper. Unlike conventional dispatch-
ing methods, two kinds of information are additionally considered in our proposed methods: the
expected arrival time of jobs in the near future and the time needed for occupied vehicles to become
idle. We firstly develop Basic Predictive Dispatching (BPD) under the assumption that job arrival
time prediction is error-free. We demonstrate that BPD consistently surpasses conventional bench-
mark dispatching methods, even when job arrival time prediction contains a certain level of error.
However, as the level of error increases, the performance of BPD deteriorates. To improve BPD’s per-
formance in the environment with prediction error, we take the certainty level of job arrival time
prediction into consideration in our second method called Certainty Weighted Predictive Dispatch-
ing (CWPD). Both BPD and CWPD formulate the OHT dispatching problem as a linear assignment
problem, but two different matching cost functions are employed separately. By conducting exper-
iments on a sample semiconductor fab, we validate the effectiveness of our proposed approaches.
The superiority of CWPD over BPD in the environment with prediction error is also verified.
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1. Introduction

Semiconductor manufacturing is known as one of the
most capital-intensive and technology-intensive indus-
tries in the world. Typical wafer fabrication is highly
complicated and involves hundreds of repetitive process-
ing steps, which requires wafers to be frequently trans-
ferred among different process machines (a.k.a. tools).
Wafer transport was once performed by human oper-
ators. As the wafer size grows to 300mm and then to
450mm in recent years, Automatic Material Handling
Systems (AMHS) have been widely adopted, forming
the transportation backbone of semiconductor fabs. The
goal of an AMHS is to reduce manufacturing cycle time
and enhance tool utilisation (Sarin, Varadarajan, and
Wang 2011).

When wafers are transferred between tools, they are
carried in the Front Opening Unified Pod (FOUP) as
a lot, which typically stores 25 wafers (Hwang and
Jang 2020). OHT is generally recognised as the main
transport instrument for the AMHS of wafer fabs. An
OHT system consists of multiple automatic vehicles and
guided overhead rails. OHTs perform wafer retrieval,
wafer delivery, and parking tasks on the guided rails by
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following the instructions from the OHT Control Sys-
tems (OCS). Inefficient operation of OHTs always leads
to undesirable delays of wafer transfer hence disrupting
the production schedules of tools. Therefore, making the
OHT system and tools operate harmoniously has become
a significant challenge for semiconductor manufacturers.
Particularly the dispatching and routing problems related
to the OHT system have attracted considerable attention
from academia (e.g. Schmaler et al. 2017; Lee, Lee, and
Na 2018; Ahn and Park 2021).

This paper focuses on the dispatching of OHTs – the
procedure of determining the assignment between wafer
transfer requests and OHTs. The dispatching decision
is usually made when a transfer request is released or
when an occupied OHT finishes its assigned delivery
request. It is a very challenging task due to the vari-
ability of wafer process times, the traffic of OHT vehi-
cles, and the massive number of transportation requests
(Aresi et al. 2019). Meanwhile, the quality of OHT dis-
patching decision directly affects AMHS’s efficiency and
then crucially influences the fab’s overall performance.
Therefore, a large number of studies have been done
on developing effective OHT dispatching methods (e.g.
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Wang and Chen 2012; Qin, Zhang, and Sun 2013; Hu
et al. 2020).

However, most of the previous works on OHT dis-
patching havemerely paid attention to the fab’s state at the
dispatching moment. There is indeed some information
regarding the fab’s future state, e.g. the estimated arrival
time of near-future transfer requests and the time needed
for occupied OHTs to be idle, which is beneficial to make
OHT dispatching decisions. Those kinds of information
can be provided by the various modernised informa-
tive systems of a fab, e.g. the Manufacturing Execution
System (MES). Moreover, such information is supposed
to be more accessible and accurate with the advance of
Industrial IoT technologies. Nevertheless, even so, few
dispatching methods have considered such information.
This study is to bridge the gap.

In this paper, we propose two novel predictive OHT
dispatching methods called Basic Predictive Dispatching
(BPD) and Certainty Weighted Predictive Dispatching
(CWPD). In the two proposed dispatching methods, two
kinds of information: (1) the arrival time of near-future
lot transfer requests and (2) the time needed for occupied
vehicles to be idle, are additionally considered to make
a look-ahead OHT dispatching decision. Both BPD and
CWPD formulate the OHT dispatching problem as a lin-
ear assignment problem, while two different matching
cost functions are separately defined. BPD is proposed
for the environment without prediction error in which
the prediction on the arrival time of near-future transfer
requests is error-free. In reality, however, the arrival time
of future jobs usually can not be precisely estimated. Thus
we further propose the improved version of BPD called
CWPD to yield higher performance in the environment
where the arrival time of near-future transfer requests is
erroneous. The effectiveness of our proposed methods is
verified by performing experiments in a sample fab under
different assumptive environments.

The rest of the paper is structured as follows. In
Section 2, a brief literature review on vehicle dispatch-
ing is addressed. The details of the problem we address
and assumptions are presented in Section 3. Section 4
presents the proposed rules. Experiment results and anal-
ysis are described in Section 5. Finally, in Section 6, we
draw conclusions.

2. Literature review

This section gives a brief review of the previous stud-
ies on OHT dispatching and Automatic Guided Vehicle
(AGV) dispatching. These works generally can be classi-
fied into two categories: static vehicle dispatching rules
and dynamic vehicle dispatching rules. The difference
lies in whether dispatching decisions can be changed

adaptively. The previous works related to predictive vehi-
cle management are reviewed in a separate subsection.
Hereafter, a vehicle refers to the vehicle unit in an OHT
system or an AGV system; a job refers to the lot transfer
request or lot.

2.1. Static vehicle dispatching

In static vehicle dispatching rules, the job-vehicle assign-
ment decisions are not allowed to change once they are
made. The existing static dispatching rules are mainly
greedy heuristic rules. A few works have studied the
mixed dispatching policy that integrates the single classic
rules. Hu et al. (2020) has proposed a deep reinforcement
learning based dispatching policy that combines five
conventional dispatching rules: First Come First Served
(FCFS), Shortest Travel Distance First (STDF) or Near-
est Job First (NJF), Earliest Due Date (EDD), Longest
Waiting Time (LWT), and Nearest Vehicle First (NVF).
Their model is trained to select the appropriate dispatch-
ing rules and vehicles according to different situations.
Kuo and Huang (2006) have proposed a multimission-
oriented vehicle dispatching policy in which four dis-
patching rules are dynamically switched based on a fuzzy
logic mechanism. By combining the advantage of the
NJF and the LWT rule, Liao and Fu (2002) proposed the
Modified Nearest Job First (MNJF) rule. When a vehi-
cle becomes idle, if there exist jobs whose waiting time
exceeds the predefined time factor, then the job with the
longest waiting time will be selected by applying LWT.
Otherwise, the NJF rule is executed. Factorised Nearest
Job First (FNJF) is also a composite dispatching rule of
the NJF and LWT. It selects a job for transport based on
a cost function defined by the waiting time as well as
the distance between the job and the available vehicles.
Table 1 gives an overview of reviewed static dispatching
methods.

2.2. Dynamic vehicle dispatching

Unlike static dispatching rules, dynamic dispatching
rules allow changing job-vehicle assignment decisions
adaptively to capture the constant change of fab situation.
Liao and Wang (2006) proposed an effective dynamic
dispatching policy called Differentiated Preemptive Dis-
patching Policy (DPD) to provide prioritised transport
services for jobs with high priority. When an empty vehi-
cle is reserved for a high-priority job, if another vehicle
becomes empty and is closer to the initially reserved
vehicle, the new idle vehicle will be assigned to the
high-priority job, which changes the original assignment.
Wang and Chen (2012) proposed an improved version
of DPD called Heuristic Preemptive Dispatching policy



INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 3

Table 1. Overview of static dispatching methods.

Dispatching rules Types Description

HP Single Job with highest priority is delivered first
FCFS Single Job with earliest arrival time is delivered first
STDF/NJF Single Job with shortest travel distance is moved first
EDD Single Job with earliest due date is selected first
LWT Single Job with the longest waiting time is selected first
NVF Single Vehicle with shortest distance is selected first
DQN-based (Hu et al. 2020) Multiple FCFS, STDF, EDD, LWT, and NVF are adaptively selected by DQN
Multi-mission (Kuo and Huang 2006) Multiple HP, EDD,LWT, and NJF are adaptively selected by fuzzy logic
MNJF (Liao and Fu 2002) Multiple NJF or LWT is selected by a predefined time factor
FNJF Multiple Job selected by a cost function of waiting time and distance

Table 2. Overview of dynamic dispatching methods.

Dispatching rules Methodology Description

DPD (Liao and
Wang 2006)

Rule-based Jobs with high priority enjoy
preemptive transport service

HPD (Wang and
Chen 2012)

Rule-based Improved version of DPD

RBD (Kim et al. 2007) Rule-based Reassignment is made if there is
better matching

HABOR (Kim et al. 2009) Analytical Vehicle dispatching is globally
solved by Hungarian method

MHAFLC (Qin, Zhang,
and Sun 2013)

Analytical Hungarian method and fuzzy-
logic-based weight adjusting

(HPD) that focuses on minimising transport blocking
and waiting time for high priority jobs while creating
a minimal negative impact on the transport for normal
jobs. Kim et al. (2007) proposed an efficient vehicle reas-
signment logic called Reassignment Based Dispatching
(RBD). When a delivery vehicle becomes empty, the new
available vehicle will search the already assigned jobs but
not loaded. If there exist such jobs that are closer to the
new available vehicle than the initially reserved vehicle,
the new available vehicle will select the best-fitted match.
Afterward, they extended the idea of RBD and pro-
posed the Hungarian Algorithm Based OHT Reassign-
ment (HABOR) rule. In HABOR, the vehicle dispatching
problem is formulated as an assignment problem and
solved by the Hungarian algorithm (Kim et al. 2009).
HABOR has been confirmed superior over RBD due
to allowing multiple reassignments among the available
vehicles and available jobs. Qin, Zhang, and Sun (2013)
proposed a dynamic dispatching approach using a mod-
ified Hungarian algorithm and fuzzy-logic-based con-
trol (MHAFLC). In the proposed dispatching rule, job
due date, job waiting time, and system load are thor-
oughly considered and used as the main elements of the
cost function whose weight coefficients are adjusted by
a fuzzy-logic-based control mechanism. Table 2 gives an
overview of reviewed dynamic dispatching methods.

2.3. Look-ahead vehiclemanagement

de Koster, Le-Anh, and van der Meer (2004) investi-
gated the benefit of utilising the pre-arrival information

of transfer requests for AGV dispatching and concluded
that such information could reduce job-waiting times.
However, they barely studied the case that the pre-
arrival information of jobs is ideally accurate. They also
raised an issue that looking ahead too far could increase
the vehicle waiting time and harm the system perfor-
mance. In our study, not only the benefit of accurate
pre-arrival information, but the benefit of pre-arrival
information with prediction errors is studied. Besides,
we solved the issue they raised by giving a penalis-
ing cost on the assignment of vehicles to far-future
jobs. Kim and Bae (2004) proposed a look-ahead dis-
patching algorithm for AGVs in an automated container
terminal. But there is a huge difference between the
AGV system of an automated container terminal and
the OHT system of a wafer fab. Their main problem is
more like a parallel machine scheduling problem with
sequence-dependent setup times and precedence con-
straints among jobs. Huang and Lin (2016) has proposed
a Pre-Dispatching Vehicle method (PDV) for the diffu-
sion area in a 300mm wafer fab. But the PDV focuses
on pre-dispatching empty vehicles within a bay in which
the complexity of dispatching decision making is largely
reduced. Thus in PDV, the assignment between job and
vehicle simply follows static heuristics rule, e.g. NVF.
Gupta, Hasenbein, and Park (2020) proposed two look-
ahead based dispatching policies, which used the infor-
mation of estimated time that a busy vehicle will take
to arrive at its destination given its current location.
But they merely used future information related to the
vehicle. Moreover, like previous works, only the greedy
heuristic rule is used for the assignment between vehicles
and jobs. Some studies have worked on the idle vehi-
cle balancing by considering future information regard-
ing vehicles and jobs for decision making (Chaabane
et al. 2013; Schmaler et al. 2017). However, idle vehicle
balancing is to flexibly determine the appropriate num-
ber of vehicles in different areas of fab according to job
arrival dynamics, which has a fundamental difference
with the dispatching problem addressed in this paper.
Table 3 gives a comparison of reviewed literature with our
work.
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Table 3. Comparison of reviewed literature with our work.

Literatures Research problem Methodology FVI FJI

de Koster, Le-Anh, and
van der Meer (2004)

Vehicle dispatching Rule-based ✕ ✓

Kim and Bae (2004) More like parallel
machine scheduling

Analytical ✓ ✓

Huang and Lin (2016) Vehicle dispatching Rule-based ✕ ✓
Gupta, Hasenbein, and
Park (2020)

Vehicle dispatching Rule-based ✓ ✕

Schmaler et al. (2017) Idle vehicle balancing Rule-based ✓ ✓
Chaabane et al. (2013) Idle vehicle balancing Rule-based ✓ ✓
Ours Vehicle dispatching Analytical ✓ ✓

Note: FVI: future vehicle information. FJI: future job information.
✓: considered. ✕: not considered.

3. Problem statement and assumptions

Figure 1 illustrates the general job delivery process in
this study. Before arrival, the status of a job is future(F).
When the job arrives at a specific bay, it becomes an unas-
signed waiting job(UW). It first enters the queue of the
bay’s loading point and then waits for retrieval of vehi-
cles. The time interval between the job arrived moment
and the vehicle assignedmoment is defined as unassigned
waiting time. As soon as a vehicle is assigned to the job,
it starts retrieving, and its status changes from idle(I)
to retrieval(R). The status of the job also changes into
retrieval waiting(RW). The time that takes the vehicle to
retrieve the job is termed as retrieval waiting time. After
the vehicle reaches the loading point, the vehicle begins
picking up the job, and its status changes to loading(L).
The time spent on this procedure is called loading time.
When loading is completed, the vehicle starts moving the
job to its target bay. Delivery time is defined as the time
spent on this procedure. After the vehicle arrives at the
target bay’s unloading point, the job is dropped off and
immediately leaves the system. Time spent on dropping
off the job is dubbed as unloading time. Both the loading

time and unloading time are set to 10 s in the system. The
total time spent on the whole delivery process is termed
as lead time.

We take the arrival of a job as the dispatching deci-
sion point. That is to say: dispatching decisions are made
every time a new job arrives. We define the look-ahead
window as the time horizon that the pre-arrival informa-
tion of jobs can be known. For instance, if the look-ahead
window is set to 60 s, it suggests that the arrival infor-
mation of jobs whose expected arrival time is within 60 s
from the dispatching moment can be known in advance.
Our objective is to minimise the average lead time of
jobs. This objective can be restated as minimising the
average waiting time (sum of unassigned waiting time
and retrieval waiting time) of jobs since the dispatching
method mainly influences the unassigned waiting time
and retrieval waiting time.

Figure 2 presents a small size motivating example to
state our research problem and goal more clearly. There
are three vehicles: OHT1 just finished its previous job
and now in idle status; OHT2 is retrieving job1; OHT3
is unloading a job and will become idle soon. There
are three jobs: job1 is in being retrieved; job2 is wait-
ing for assignment at the loading point of Tool1; job3
is arriving soon at the loading point of Tool2. We are
now at dispatching decision making moment because of
the arrival of Job2. In static dispatching scenarios, most
traditional rules have merely considered the assignment
between the unassigned waiting jobs(UW) and idle vehi-
cles(I). But obviously, it is not a wise decision to match
OHT1with Job2 in this example because bothOHT1 and
OHT2 will travel a far distance for retrieving. Existing
dynamic dispatching rules havemade some extensions by
allowing changing the job-vehicle assignment adaptively.
They additionally consider retrieval waiting jobs(RW) as

Figure 1. General job delivery process.
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Figure 2. Motivating example.

dispatching available jobs and retrieval vehicles(R) as dis-
patching available vehicles. Thus dynamic dispatching
rules can achieve a wiser decision: OHT1 matched with
Job1 and OHT2 matched with Job2, which can appar-
ently reduce the averagewaiting time of jobs. In our study,
however, we take a more global look by additionally con-
sidering occupied vehicles and future jobs for decision
making. Our study focuses on how to efficiently dispatch
OHTs in a predictive way, e.g. OHT1 matched with Job1,
OHT2 matched with Job2, OHT3 matched with Job3 in
the motivating example.

4. Model description

In this section, we propose two dispatching methods:
BPD and CWPD. In our model, the OHT dispatching
problem is formulated as a linear assignment problem.
Twomatching cost functions are defined for the environ-
ment without prediction error and the environment with
prediction error, respectively. Table 4 gives a summary of

Table 4. Summary of notations.

Symbol Explanation

J available job set
V available vehicle set
λmn the arrival rate of transfer request from baym to bay n
λm the arrival rate of transfer request from baym
EATj the expected arrival time of job j
AATj the actual arrival time of job j
tnow the moment of dispatching
Pj the probability of updating EATj for job j
TTAj time required for job j to arrive
JTcl→dest

v Journey time from the current location of vehicle v to its
destination

RLTv remaining loading time of vehicle v
RULTv remaining unloading time of vehicle v
RATj relative arrival time of job j
TTCv time required for vehicle v to become idle
JWTjv job waiting time when job j is matched with vehicle v
cjv matching cost when job j is matched with vehicle v
cfj certainty factor of job j

the notations that will typically be used throughout the
following sections.

4.1. Vehicle dispatching problem formulation

Tomake a dispatching decision, the first thing is to define
the dispatching available jobs and dispatching available
vehicles. In contrast to previous dispatching rules, we
take the unassigned waiting jobs(UW), retrieval wait-
ing jobs(RW), and future jobs(F) within the look-ahead
window as dispatching available jobs. Besides idle vehi-
cles and retrieval vehicles, occupied vehicles: loading
vehicles(L), delivery vehicles(D), and unloading vehi-
cles(UL) are also counted as dispatching available vehi-
cles in our proposed methods. Even though the occu-
pied vehicles can not perform other jobs right now,
the time required for them to complete their assigned
jobs can be approximately anticipated.We can determine
the next jobs they should do as soon as they become
unoccupied.

We formulate our vehicle dispatching problem as a lin-
ear assignment problem defined by equations (1)–(4). If
the number of available jobs is larger than the number
of vehicles, dummy vehicles will be added to make the
same number of jobs and vice versa. The jobs assigned
to dummy vehicles will temporarily remain unplanned.
The vehicles matched with dummy jobs will keep their
original status.

Let xjv =
{
1 if job j is assigned to vehicle v
0 if not

cjv = cost of matching job j with vehicle v
(1)

Minimize Z =
|J|∑
j

|V|∑
v

cjvxjv
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Subject to :
|V|∑
v

xjv = 1, for j = 1, 2, . . . , |J| (2)

|J|∑
j
xjv = 1, for v = 1, 2, . . . , |V| (3)

xjv = binary, for all j and v (4)

To solve the linear assignment problem, the cost function
of matching job j and vehicle v has to be well defined.
Next, we elaborate on the two matching cost functions
defined for the environmentwithout prediction error and
the environment with prediction error.

4.2. Matching cost definition

4.2.1. Basic predictive dispatching version
This cost function is defined for the environment where
jobs’ expected arrival time can be absolutely correct.
Specifically, jobs’ expected arrival time is exactly the same
as their actual arrival time in the error-free environment.
Therefore, all EATj in this subsection can be replaced by
AATj.

For each job j in the available job set J, we define:

TTAj = (EATj − tnow)+ (5)

where TTAj is the time required for job j to arrive at tnow.
If job j has already arrived by tnow, then TTAj is set to 0.
In our motivating example, Job1 and Job2 have arrived,
thus their TTA are 0. As for Job3, suppose EAT1 = 10 s,
EAT2 = tnow = 20 s, EAT3 = 50 s, thus TTA3 = 30 s.

For each vehicle v in the available vehicle set V, we
define:

TTCv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0 if vehicle v is in idle or

retrieval status
RLTv + JTcl→dest

v
+RULTv if not

(6)
where TTCv is the time required for vehicle v to com-
plete its currently assigned job. Since idle vehicles and
retrieval vehicles can immediately go for a newly assigned
job, if vehicle v is in idle or retrieval status, TTCv is set to
0. The TTCv of an occupied vehicle v is the sum of the
remaining loading time, journey time from current loca-
tion to destination, and the remaining unloading time.
In our motivating example, OHT1 and OHT2 are unoc-
cupied, thus their TTC are 0. But for OHT3, it has to
first finish its current job before performing other jobs.
Because OHT3 is in unloading status, thus RLT3 = 0 and

JTcl→dest
3 = 0. Suppose the remaining unloading time is

5 s, then TTC3 = RLT3 + JTcl→dest
3 + RULT3 = 5 s.

In addition, RTjv is defined as the retrieval time
required when job j is assigned to vehicle v. To be more
specific, it can be roughly considered as the journey time
from the location where vehicle v is able to start retriev-
ing earliest to the pick-up location of job j. For instance,
if vehicle v is in idle or retrieval status, the location it
can start retrieving earliest is its current location. But for
the occupied vehicles, the locations they can start retriev-
ing earliest should be their destinations because they can
not retrieve other jobs until they complete their currently
assigned jobs. In our motivating example, the locations
to start retrieving earliest for three vehicles are all their
current locations. Thus retrieval time here can be approx-
imately calculated as the journey time from their current
location to the pick-up location of their matching job.
According to the travel time on the marked segment, we
can obtain RT11 = 5 s, RT12 = 55 s, RT13 = 60 s, RT21 =
40 s, RT22 = 10 s, RT23 = 15 s, RT31 = 15 s, RT32 = 35 s,
RT33 = 40 s.

By combining the three elements defined above, the
preliminary cost function can be defined as:

cjv = (TTCv + RTjv − TTAj)
+ (7)

The above cost function works well when the number
of available jobs |J| is smaller than the number of avail-
able vehicles |V|. Because in this condition, every job
will indeed be assigned to a vehicle. Through the above
cost function, the optimal matching for each job can
be selected from the adequate vehicles so that the total
dispatching cost will be minimised.

However, when the look-ahead window is large, |J|
will be larger |V| and there will be some far-future jobs in
the available job set.Their TTAj may be even larger than
TTCv + RTjv for some vehicle v, whichmakes thematch-
ing cost becomes 0. Therefore, vehicles will be assigned
to those far future jobs to minimise the total dispatch-
ing cost. This will cause vehicles to go to the origins of
far-future jobs and wait for their arrival instead of per-
forming the already arrived jobs and near-future jobs.
This is exactly the issue raised by de Koster, Le-Anh, and
van der Meer (2004). To resolve the issue, we can simply
limit the maximum number of available jobs to the num-
ber of vehicles |V|. Next, we provide another solution for
the issue, which can be considered as a general form of
the preceding solution.

We add a new element to the cost function called rel-
ative arrival time (RAT) to resolve the issue. For each job
j in the available job set J, we define:

RATj = EATj − min
{
EAT1,EAT2, . . . ,EAT|J|

}
(8)
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Figure 3. Amanual solution to our motivating example by using the proposed BPDmethod.

To compactly represent the dispatching cost of matching
job j and vehicle v, we define:

JWTjv = (TTCv + RTjv − TTAj)
+ (9)

where JWTjv is defined as the waiting time of job j when
it is matched with vehicle v. It is the difference between
the total time needed for vehicle v to retrieve job j and the
time needed for job j to arrive. If TTCv + RTjv is smaller
than TTAj, it means that vehicle v can arrive at the pickup
location earlier than the arrival of job j, then JWTjv = 0.

Finally, we propose the matching cost function, which
is a combination of JWTjv and RATj.

cjv = JWTjv + α · RATj (10)

where α is the weighting parameter. Job j with a smaller
RATj is supposed to have a relatively higher priority to
be planned because the RATj of far-future jobs is large,
thus will increase the matching cost. The value of α can
be appropriately adjusted to different environmental set-
tings. The preceding solution that limits the maximum
number of available jobs to the number of vehicles |V| is
actually the case when α is dominantly large. The proof
of the equivalence of the two solutions has been provided
in Appendix 1.

To better explain the role of RATj, we make some
changes on our motivating example. Suppose we only
have OHT2, Job2 and Job3. Without RATj term, the cost
of matching OHT2 with Job2 is c22 = (TTC2 + RT22 −
TTA2)

+ = 10, the cost of matching OHT2 and Job3 is
c32 = (TTC2 + RT32 − TTA3)

+ = 5. Because c22 > c32,
OHT2 will be matched with Job3 even though Job2

has already arrived and is waiting to be transported. If
RATj term is introduced, we can first calculate RAT2 =
0,RAT3 = 30. Suppose α = 1, then the cost of match-
ingOHT2 and Job2 is c22 = (TTC2 + RT22 − TTA2)

+ +
RAT2 = 10, the cost ofmatchingOHT2 and Job3 is c23 =
(TTC2 + RT32 − TTA3)

+ + RAT3 = 35. Now c22 < c32,
thus OHT2will be matched with Job2, which is the desir-
able dispatching decision. The effectiveness of RATj can
also be seen in Figure 8.

Figure 3 shows a manual solution to our motivating
example by using the proposed BPD method. By inte-
grating the vehicle information and job information, we
get thematching costmatrix. The optimalmatching solu-
tion can be obtained using any linear assignment problem
solver. As we can see, the final result: OHT1 with Job1,
OHT2 with Job2, and OHT3 with Job3, is actually the
best decision we can expect in terms of our motivat-
ing example. OHT3 matched with Job3 means that as
soon as OHT3 finishes unloading, it goes to the pick-
up location of Job3. The waiting time of Job3 will be
reduced.

4.2.2. Certainty weighted predictive dispatching
version
As aforementioned, it is almost impossible to correctly
estimate the arrival time of future jobs in reality. The
prediction error may lead to severe performance degra-
dation of BPD. To tackle this issue, we make a slight
revision on BPD’s matching cost function and name the
proposed dispatchingmethodusing the revisedmatching
cost function as CWPD.
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Figure 4. Relationship between cfj and EATj .

The fundamental idea is that the jobs should be differ-
entiated by the certainty of their EATj. Especially for the
already arrived jobs, we are absolutely sure that theirEATj
is correct, which is theirAATj. They should not be treated
identically with future jobs as we have less certainty on
the EATj of future jobs. Let cfj be the certainty factor of
job j with regard to EATj, and then it can be defined as:

cfj =
⎧⎨
⎩
b if AATj ≤ tnow

b − a
1 + (EATj − tnow)

+ a if not
(11)

where a and b are changeable constants that vary with
different environments, b>a. The certainty factor of
arrived jobs is set to b; the certainty factor of future jobs
is inversely proportional to EATj − tnow and in the range
of [a, b]. It is commonly accepted that the near-future

prediction is usually more accurate than the far-future
prediction. By the same token, the prediction on the jobs
whose EATj is closer to tnow should have higher certainty.
Figure 4 displays the relationship between cfj and EATj.

Then we propose the matching cost function for the
environment with prediction error as:

cjv = JWTjv × cfj + α · RATj (12)

By multiplying the certainty factor, the job with high cer-
tainty factors ismore likely to be assignedwith the vehicle
that minimises its waiting time. The matching cost func-
tion defined in Equation (10) can be considered as a
special case when b and a in Equation (11) are the same.
A more detailed description on the role of cfj is provided
in Appendix 2.

5. Experiment and result analysis

In this section, we elaborate on the environment settings
for experiments. A detailed analysis of the experiment
resultswill also be presented.Wefirst compare the perfor-
mance of NVF, HABOR, and the proposed BPD method
in the environment without prediction error. In the same
environment, we further investigate the effect of the look-
aheadwindow on the performance of BPD. The third and
fourth experiments contrast the performance of BPD and
CWPD in the environment with prediction error.

5.1. Illustration of sample semiconductor fab

The layout of the sample fab considered for this study is
shown in Figure 5. It can be considered as the central loop
of awhole unified fabwhich is comprised of 20 bays. Each

Figure 5. Track layout of sample fab.
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Figure 6. Implementation of the experiment environment.

bay has one loading point and one unloading point. The
loading point and unloading point corresponds to the
exit and entrance of a bay. The system has also been used
as an experimental environment in the literature (Kim,
Yu, and Jang 2016; Hwang and Jang 2020). The horizon-
tal length and the vertical lengths are 128m and 16m,
respectively. All the flow paths are unidirectional.

In the system, the details of the wafer processing are
ignored. Transfer requests between the bays are directly
generated to indicate that jobs are available to be per-
formed. The arrivals of jobs between two different bays
follow the independent Poisson Process. These settings
have been adopted in previous literature (Kim et al. 2009;
Bartlett et al. 2014; Hwang and Jang 2020). The expected
interarrival time of jobs in the whole system is around 6 s.
Thismakes the average utilisation of vehicles around 75%
when applying the NVF dispatching rule, which is close
to the real situation.

There are entirely 28 vehicles in the system. A vehi-
cle can only perform one job at a time. The straight path
and curve path velocity is 2m/s and 0.5m/s, respectively.
Vehicles do not need to charge the battery, andnoparking
locations are designated for idle vehicles.When a delivery
vehicle becomes idle, it remains at the destination loca-
tion and waits for another call. If other vehicles want to
pass the location, the idle vehicle will be pushed to the
next bay’s unloading point.

Figure 6 displays the structure of our experiment envi-
ronment implementation. The sample fab is modelled
using the most broadly used software in the semicon-
ductor industry: AutoModTM . The proposed dispatching
methods are implemented by Python. Socket communi-
cation is employed for information transmission between
AutoMod and our dispatcher. Since we take the arrival
of a job as the dispatching decision point, when a new
job becomes available, the sample fab system sends the
necessary information regarding the available jobs and
the available vehicles to the Python dispatcher. The dis-
patcher formulates a linear assignment problem based on
the received information and sends the optimal dispatch-
ing results back to the sample fab system. Vehicles are
dispatched strictly according to the result obtained from
the Python dispatcher.

We set a 24-simulation hour warm-up period for each
environment in order that the system can reach the steady
state. Then we collect data for 24 simulation hours after
the warm-up period. In order to yield reliable simula-
tion results, each simulation is repeated five times. In
all the following experiments, we have limited the maxi-
mum number of available jobs to the number of vehicles.
According to the discussion of Appendix 1, the RATj
term becomes unnecessary in this condition. However,
to show the completeness of our method, the weighting
parameter α in the two matching cost functions is set
as 1.

5.2. Environment without prediction error

In the error-free environment, we assume that the EATj
of each job j is precisely the same as AATj. We denote
the BPDmethod with 0 s and 20 s look-ahead window as
BPD(0) and BPD(20), respectively. The first experiment
compares the performance of NVF, HABOR, BPD(0),
and BPD(20). The difference between the four dispatch-
ing methods is displayed in Table 5.

Figure 7 illustrates a performance comparison of the
four dispatching methods. As expected, different dis-
patching methods have an insignificant influence on the
average delivery time of jobs. However, we can appar-
ently observe that BPD(0) and BPD(20) achieve better
results than HABOR and NVF concerning the average
lead time and the average waiting time. HABOR per-
forms better than the NVF rule because it can capture
the dynamic change of the fab state. BPD(0) shows higher
efficiency than HABOR because it additionally considers
occupied vehicles as dispatching available vehicles. The
reason that BPD(20) performs better than BPD(0) can
be attributed to utilising the pre-arrival information of

Table 5. Summary of NVF, HABOR, BPD(0) and BPD(20).

Dispatching methods Property
Types of

available jobs
Types of available

vehicles

NVF Static UW I
HABOR Dynamic UW, RW I, R
BPD(0) Dynamic UW,RW I, R, L, D, UL
BPD(20) Dynamic UW,RW, F I, R, L, D, UL
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Figure 7. Performance of different dispatching methods.

Figure 8. Performance of BPD with different look-ahead window.

future jobs, which indicates that the system does benefit
from pre-allocating vehicles to the future jobs.

To further investigate the effect of the look-ahead
window on the performance of BPD, we evaluate the
BPD under different look-ahead window settings. The
BPD just using Equation (7) as matching cost function
and without any remedy, which we name as incomplete
BPD, is also tested. The experiment result is displayed in
Figure 8. When the look-ahead window is in the range of
0–100 s, both their average lead time declines as the look-
ahead window increases. But the decrease gets slower.

Incomplete BPD and BPD almost have the same per-
formance at this range because the number of available
jobs is still smaller than the number of vehicles. In this
case, the incomplete BPD and BPD identically work well.
However, as the look-ahead window continues increas-
ing,more far future jobswill be taken as available jobs and
the number of available jobs exceeds the number of vehi-
cles. Then the incomplete BPD without any remedy falls
into the issue we mentioned in Section 4. That is why the
average lead time of incomplete BPD increases so rapidly.
In contrast, the BPD still keeps good performance even
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though the look-aheadwindow’s increase nomore brings
performance improvement. This phenomenon is consis-
tent with common sense that the information too far
away actually does not help make dispatching decisions
in the present.

5.3. Environment with prediction error

In practice, the job pre-arrival information provided by
the MES may contain prediction errors. In the follow-
ing subsections, we consider two virtual environments
with prediction errors for the performance comparison
of BPD and CWPD. We assume that an estimated job
arrival list can be obtained from MES initially (Initial
EATj prediction). As the manufacturing process pro-
gresses, the estimated job arrival list will be updated
continuously to predict jobs’ arrival times more reason-
ably (EATj update). The two virtual environments have
different ways of EATj initialisation and update. It should
be noted that the proposed BPD consistently shows better
performance than NVF and HABOR even when the job
arrival prediction is not entirely accurate; the following
experiments are mainly to demonstrate the superiority
of CWPD over BPD in the environment with prediction
error.

5.3.1. Environment1: periodical arrival prediction
5.3.1.1. InitialEATj prediction. In the periodical arrival
environment, the EATj of each job j is initialised accord-
ing to the cycle time of the bay where job j is generated.
By adding the arrival rate of jobs from bay m to other
bays together, we can obtain the pooled arrival rate of jobs
from the same baym: λm = ∑20

n=1 λmn. It can be consid-
ered as the throughput of baym, and the cycle time of bay
m can be approximately calculated by 1

λm
.We assume that

the arrival of jobs in a specific bay is strictly scheduled by
its cycle time. That is to say, for the Nth job j generated
from baym, EATj = N × 1

λm
.

5.3.1.2. EATj update. As aforementioned, the EATj of
jobs needs to be updated to keep the prediction rea-
sonable as the manufacturing process progresses. In
this environment, a total of four kinds of update are
involved.

(1) If the job generated at tnow is from bay m, then the
EATj ofNth job that will be released at baymwill be
rescheduled again by taking tnow as starting point,
e.g. EATj = tnow + N × 1

λm
(2) For the job j that has already arrived, EATj should be

updated to AATj, e.g. EATj = AATj
(3) For the job j who has not arrived yet but EATj is

smaller than tnow, which means that the prediction

has already turned out wrong. Thus EATj is updated
by uniformly sampling from the interval between
tnow and AATj, e.g. EATj = U(tnow,AATj)

(4) For the job jwho has not arrived yet and EATj is also
larger than tnow (within look-ahead window), EATj
is update by uniformly sampling from the inter-
val EATj and AATj (or AATj and EATj) w.p. Pj =

1
k·(AATj−tnow)+1 , where k is a constant

The reason for performing the fourth update is that
the new information (i.e. the processing time of cur-
rent operation of jobs) continuously becomes available,
and this information helps to improve the prediction on
the arrival time of future jobs. For a fixed k, the job
whose AATj is closer to tnow has higher Pj because it is
commonly accepted that the newly available information
usually helps more on the prediction of nearer jobs.

We compare the performance of BPD and CWPD
under different settings of k. In this experiment, the look-
ahead window is set to 100 for both BPD and CWPD.We
find that the prediction error is very high in this envi-
ronment, meaning that the uncertainty on the prediction
of future jobs’ arrival time is also high. Thus the con-
stant a and b in cfj is set as 0 and 100, respectively. This
setting ensures cfj has a larger range to differentiate the
jobs more appropriately. The experiment result is illus-
trated in Figure 9. The smaller k is, the more frequent
EATj will be updated. Therefore, it can be observed that
as the value of k increases, both the performance of BPD
andCWPDdecreases.However, CWPDcan always give a
satisfactory result than BPD, indicating that considering
the certainty factor of prediction on jobs makes the pro-
posed dispatching method more robust to the prediction
error.

5.3.2. Environment2: initial prediction with Gaussian
noise
5.3.2.1. Initial EATj prediction. In the Gaussian noise
environment, the EATj is initialised by introducing a cer-
tain level ofGaussian noise toAATj for each job j. In other
words, EATj = N(AATj, σ), for each job j.

5.3.2.2. EATj update. EATj update in this environment
is almost the same as the update in the periodic arrival
environment except for two differences. One difference is
that the first update in the periodic arrival environment is
omitted because the prediction error in this environment
is determined by σ instead of the cycle time of a specific
port. The other difference is that the look-ahead window
used in the above two environments is replaced by the
number of future jobs looking ahead due to the uneven
distribution of EATj resulted by the Gaussian noise.
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Figure 9. Performance comparison under different k settings.

Figure 10. Performance comparison under different σ settings.

We contrast the performance of BPD and CWPD
under different settings of σ . The number of jobs for
looking ahead is set as 20, which is close to the number
of jobs within the saturating look-ahead window in other
environments considering the expected inter-arrival time
of job arrivals is 6 s for the whole system; the constant k
in Pj is set as 1; the constant b in cfj is set as 100 while the
constant a in cfj is adaptively changed to σ . A special case

is that if σ is 0, i.e. the environment becomes error-free,
then we can set a to b. Figure 10 demonstrates the perfor-
mance comparison of BPD and CWPD under different
levels of Gaussian noise. We can easily observe that both
the performance of BPD and CWPD worsen as the level
of noise increases. However, CWPD consistently shows
superior results than BPD, especially when the level of
noise is high. The result again confirms the superiority
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of CWPD over BPD in the environment with prediction
error.

6. Conclusion

In this paper, we studied the predictive dispatching of
vehicles by additionally considering the pre-arrival infor-
mation of future jobs and the time needed for occupied
vehicles to be idle.We verified the effectiveness of the pro-
posed BPD and CWPD methods by conducting exper-
iments on a sample semiconductor fab under different
environment settings. The experiment results demon-
strate that vehicle dispatching using the job state and
the vehicle state expected in the near-future can signif-
icantly improve AMHS’s performance in semiconduc-
tor fabs, which can mean a considerable cost saving for
semiconductor manufacturers.

Moreover, considering the generality of the proposed
methods, they might have the potential to be applied in
other path-based material handling systems. The idea of
predictive dispatching can also be applied by online ride-
sharing companies such as Uber, DiDi.

Further studies may include the accurate prediction
of the future transfer requests and vehicles’ travel time
because they can directly improve the performance of
predictive dispatching. Utilising planned vehicle dis-
patching results to guide the routing of vehicles is also
worth investigating.
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Appendices

Appendix 1

Suppose the available job set J has been sorted by the EATj,
meaning that RAT1 = 0 < RAT2 < RAT3 < · · · < RAT|J|.
Next we prove the equivalence of the following two solutions.

(i) Limit the maximum number of available jobs to the num-
ber of vehicles |V| while using cjv = (RTjv + TTCv −
TTAj)

+ = JWTjv.

(ii) Use cjv = JWTjv + α · RATj, where α is a very large num-
ber.

Proof: Case 1: |J| ≤ |V|.
The objective function of solution i is as follows.

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
|J|∑
j=1

|V|∑
v=1

JWTjvxjv (A1)

The objective function of solution ii is as follows.

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv

=
|J|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

=
|J|∑
j=1

|V|∑
v=1

JWTjvxjv + α ·
|J|∑
j=1

|V|∑
v=1

RATjxjv

=
|J|∑
j=1

|V|∑
v=1

JWTjvxjv + α ·
|J|∑
j=1

RATj

|V|∑
v=1

xjv︸ ︷︷ ︸
=1

=
|J|∑
j=1

|V|∑
v=1

JWTjvxjv + α

|J|∑
j=1

RATj

︸ ︷︷ ︸
constant

=
|J|∑
j=1

|V|∑
v=1

JWTjvxjv

︸ ︷︷ ︸
= (A1)

(A2)

Case 2: |J| > |V|
In this case, because solution i limits the number of available

jobs to |V|. Thus |J| = |V| in solution i. The objective function
of solution i is as follows.

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
|V|∑
j=1

|V|∑
v=1

JWTjvxjv (A3)

The objective function of solution ii is as follows.

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
|J|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

=
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

+
|J|∑

k=|V|+1

|V|∑
v=1

(JWTkv + α · RATk)xkv

(A4)

Because
∑|J|

j=1 xjv = 1, thus in (A4), xjv + xkv = 1, where both
xjv and xkv are binary. Next we prove that to minimise (A4), xkv
must all be 0 for k = |V| + 1, |V| + 2, . . . , |J|.
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If xkv = 0,∀ k = |V| + 1, |V| + 2, . . . , |J|, total dispatching
cost is:

TC1 =
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

+
|J|∑

k=|V|+1

|V|∑
v=1

(JWTkv + α · RATk)xkv

︸ ︷︷ ︸
=0

=
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

Now suppose one of xkv becomes 1,e.g. xlv = 1, |V| + 1 ≤ l ≤
|J|, then one of xjv should become 0, e.g. xiv = 0, 1 ≤ i ≤ |V|.
The total dispatching cost in this case is:

TC2 =
|V|∑

j=1,j �=i

|V|∑
v=1

(JWTjv + α · RATj)xjv + (JWTlv + α · RATl)

Then we have:

TC2 − TC1 =
|V|∑

j=1,j �=i

|V|∑
v=1

(JWTjv

+ α · RATj)xjv + (JWTlv + α · RATl)

−
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

= (JWTlv + α · RATl) − (JWTiv + α · RATi)

= α(RATl − RATi) + (JWTlv − JWTiv)

BecauseRATl − RATi > 0 and α is a dominantly large number,
thus no matter how (JWTlv − JWTiv) will be, TC2 − TC1 > 0.
This indicates that any change of xkv from 0 to 1 will increases
the dispatching cost. Hence, to minimise the total dispatching
cost, all xkv should be 0.

Now we continue our proof from (A4). Because all xkv
should be all 0 in (A4), then the objective function can be
rewritten as:

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
|J|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

=
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

+
|J|∑

k=|V|+1

|V|∑
v=1

(JWTkv + α · RATk)xkv

︸ ︷︷ ︸
=0

=
|V|∑
j=1

|V|∑
v=1

(JWTjv + α · RATj)xjv

=
|V|∑
j=1

|V|∑
v=1

JWTjvxjv

︸ ︷︷ ︸
=(A3)

(A5)

The last step uses the conclusion we have drawn for the case
|J| ≤ |V|. Finally, we complete our proof. �

Appendix 2

A.1

The CWPD version of the two solutions discussed in
Appendix 1 is as follows.

(i) Limit the maximum number of available jobs to the num-
ber of vehicles |V| while using cjv = (RTjv + TTCv −
TTAj)

+ × cfj = JWTjv × cfj.
(ii) Use cjv = JWTjv × cfj + α · RATj, where α is a very large

number.

By following the same reasoning process of Appendix 1,
we can also prove that the above two approaches are equiva-
lently effective for the CWPD scenario. Hence, we select the
first approach as an example for the following discussion.

Without multiplying cfj, the total dispatching cost is:

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
min{|J|,|V|}∑

j=1

|V|∑
v=1

JWTjvxjv (A6)

By multiplying cfj, the total dispatching cost is:

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
min{|J|,|V|}∑

j=1

|V|∑
v=1

JWTjvcfjxjv (A7)

We can see that the original objective changes into finding xjv
so that the sum of cfjJWTjv can beminimised. For the job jwith
larger cfj, a small increase in JWTjv may increase a large portion
in total dispatching cost. Therefore, to minimise the total cost,
the job jwith larger cfj is more likely to bematched with vehicle
v that minimises its waiting time JWTjv.

A.2

If the b and a in the definition of cfj are the same, then cfj = b
for all the jobs. Therefore, (A7) can be rewritten as:

min
xjv

|J|∑
j=1

|V|∑
v=1

cjvxjv =
min{|J|,|V|}∑

j=1

|V|∑
v=1

JWTjvbxjv

= b︸︷︷︸
constant

×
min{|J|,|V|}∑

j=1

|V|∑
v=1

JWTjvxjv

=
min{|J|,|V|}∑

j=1

|V|∑
v=1

JWTjvxjv

︸ ︷︷ ︸
= (B1)
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