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Recently, many researchers focused on modeling non-monotonic hazard functions such as bath-tube and 
hump shapes. However, most of their estimation methods are focused on complete observations. Since 
reliability data are typically censored and truncated, a general EM algorithm is proposed, which can fit 
any of those complex hazard functions. The proposed EM algorithm is analyzed by fitting well-known 4-
parameter hazard functions, where its performance is compared by their specific direct methods through 
extensive Monte Carlo simulations.
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1. Introduction

Hazard rates are useful tools in reliability analysis and decision-
making [15,20]. As monotonic hazard functions such as the Weibull 
one have been heavily studied in the past [17], many researchers 
focused on modeling non-monotonic hazard functions recently. For 
instance, the hump-shaped hazard rate, which has an increasing 
then decreasing rate, is a popular model for electronic components 
that exhibits a decreasing hazard rate, but reaches a maximum 
hazard rate early in life. The log-normal distribution is often used 
for such systems [17]. In addition, the bath-tube shaped hazard 
rate, which has decreasing then increasing rate, is used to model 
the complete life cycle of a system. The bath-tube shape has been 
studied extensively by extending the forms of the Weibull distribu-
tion by adding a new parameter such as the flexible Weibull model 
[7] or by introducing several new parameters [1] such as the dis-
crete additive Weibull distribution (DAddW) [8], the generalized 
modified Weibull distribution (GMW) [11], and the exponentiated 
generalized gamma distribution (EGG) [12].

However, reliability data are typically censored and truncated, 
i.e. the exact failure times are not always known. Right-censored 
data are frequently observed because of the frequent need to ana-
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lyze life test data before all units are failed, and also due to the 
practice of preventive maintenance (PM) in the past [17]. Also, 
burn-in is a commonly used technique to improve the reliabil-
ity of a system that exhibits high hazard rate during the infant 
mortality period due to defects during manufacturing processes 
[20]. Thus, when analyzing reliability data, left-truncation often 
occurs due to burn-in periods with distribution having bath-tube 
shaped hazard rate. Hence, when estimating the parameters of a 
hazard function, one has to take into account this incomplete-
ness of the reliability data. The maximum likelihood estimation 
(MLE) method for incomplete data problems can be carried out by 
the Expectation-Maximization (EM) algorithm [16]. Recently, the 
usage of such tool was only applied to well-known simple distribu-
tions: Mitra (2013) focuses on parameter estimation of lognormal, 
Weibull, and Gamma distributions [18]. However, there is not such 
implementation for more complex hazard functions that exhibits 
non-monotone shapes, especially the bath-tube one, which is in-
tensively applied in survival analysis.

Hence, the goal of this paper is to provide a general EM al-
gorithm that can fit any desired hazard function. Barde et al. 
proposed an interesting approach, where the parameters of a re-
stricted Discrete Phase-type (DPH) distribution linked to a pre-
specified hazard function was estimated via the direct method 
(DM) [5]. They use the DPH distribution because it is able to ap-
proximate any general distribution since fitting a general phase-
type distribution corresponds to an automatic model-selection 
within a large class of distribution [2]. Hence, one can estimate 
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the parameters of a desired hazard function by using the suffi-
cient statistics of the restricted DPH distribution. Thus, this paper 
extends the previous work by developing an EM algorithm that 
can fit any pre-specified hazard function from left-truncated and 
right-censored data. The proposed EM algorithm is analyzed via 
extensive Monte Carlo simulations by comparing the three well-
known 4-parameter distributions recently developed: DAddW [8], 
GMW [11], and EGG [12] distributions.

This paper is organized as follows. In section 2, the problem 
description is described. In section 3, the proposed methodology is 
provided. In section 4, numerical results are given. In section 5, a 
conclusion and directions of future works are provided.

2. Problem description

As discussed previously, reliability data are composed of incom-
plete observations. Censoring time occurs when units are followed 
until the end of a survival analysis, where units that survive at 
that point are right-censored as their actual failure times fall to 
the right of this censoring point. Note that this can be also due 
to PM practice in the past. Such censoring is also termed as type-
I censoring in the literature [17,18]. Also, truncation occurs when 
observations are greater than a specific lowerbound, i.e. all the val-
ues that are below the threshold level are never observed, which is 
a common form of truncation for lifetime data. For example, most 
products are tested for some pre-specified number of hours be-
fore being in the market. During the testing periods, some units 
may have failed, but it is not known to us, which leads to a left-
truncated dataset [17,18].

Let us denote nF as the number of realized failure observa-
tions and yk as the realized failure time of the kth observation 
for k = 1, .., nF . Let nB be the number of right-censored observa-
tions and Bk be the right-censored level of the kth observation for 
k = 1, .., nB . Let us denote nT F as the number of left-truncated fail-
ure observations, let Ak be the left-truncated level of the kth trun-
cated observation for k = 1, .., nT F and let zk be the failure time 
of the kth truncated observation for k = 1, .., nT F . Let us denote 
nC as the number left-truncated and right-censored observations, 
let A′

k be the left-truncated level of kth truncated observation for 
k = 1, .., nC and let Ck be the right-censored level of kth truncated 
observation for k = 1, .., nC .

The dataset composed of left-truncated and right-censored ob-
servations is denoted as DLT RC , where

DLT RC = {
(yk)k=1,··· ,nF

, (Bk)k=1,··· ,nB
, (Zk)k=1,··· ,nT F

,

(Ak)k=1,··· ,nT F
, (Ck)k=1,··· ,nC

,
(

A′
k

)
k=1,··· ,nC

}
.

(1)

3. Methodology

3.1. Restricted class of DPH distribution

Let the hazard function of interest be defined as h(·; θU ) with 
parameter θU . The estimation of the proposed hazard sequence 
is based on the specific DTMC representing the degradation of 
a system presented in Fig. 1a proposed by [5]. Let {Xk}k≥0 be 
the Markov chain representing the degradation process. Its states 
0, · · · , m are transient, and its failure state F is recurrent. We 
assume that the system always renews at phase 0 (“as good as 
new”), i.e. P (X0 = 0) = 1. Let si = P

(
Xk+1 = i + 1|Xk = i

)
be the 

probability to survive at phase i, whereas let ti =P
(

Xk+1 = F |Xk =
i
)

be the probability to fail at phase i, where ti = 1 − si . Let the 
stopping time Y = inf {k ≥ 1 | Xk = F } be the time to absorption. 
Then, Y has a DPH distribution with parameters (ti, si)i=0,··· ,m and 
number of phases m. It possesses a simple hazard sequence h (·), 
which is
477
Fig. 1. Diagrams of a Markov chain representing the degradation process.

h (i) = P (Y = i | Y ≥ i) = ti . (2)

Therefore, the DPH distribution depends solely on the hazard se-
quence h (·) as described in Fig. 1b, where h̄(i) = 1 − h(i). In 
addition, the number of phases m has a physical interpretation: 
the maximum age of the system. Thus, tm = 1 for non-decreasing 
and bath-tube shaped hazard functions, whereas tm = 0 for hump 
shaped hazard function, i.e. h (m; θU ) ∈ {0,1}.

The probability mass function (PMF) of the restricted DPH by a 
hazard sequence h (·; θU ) is

f (y; θU ) =
y−1∏
i=0

[1 − h (i; θU )] h (y; θU ) for y > 0. (3)

The cumulative density function (CDF) of the restricted DPH by 
a hazard sequence h (·; θU ) is

F (y; θU ) = 1 −
y∏

i=0

[1 − h (i; θU )] for y > 0. (4)

3.2. Proposed EM algorithm

This paper maximizes the likelihood function of the DPH dis-
tribution restricted by any hazard function instead of the likeli-
hood function of the hazard function. The main advantages of this 
approach are that the derivation of the EM algorithm becomes 
straightforward, and the computation of the Q-function [16] does 
not depend solely to the hazard function, but can be applied to 
any parametric function h(.; θU ).

We define the following sufficient statistics [14] of the re-
stricted DPH distribution by the DTMC defined in Fig. 1b. Let Ni

be the number of transitions from phase i to phase i + 1 for 
i = 0, · · · , m, and let Fi be the number of jumps to the failure 
(absorbing) state F for i = 0, · · · , m. Note that there is one more 
sufficient statistic that represents the number of times that it starts 
from phase i, but since the system always starts at phase 0, we 
omitted it. Then, the likelihood of complete data is

LC (θU ) =
m∏

i=0

[1 − h (i; θU )]Ni

m∏
i=0

h (i; θU )Fi . (5)

Then, the log-likelihood of complete data is

lC (θU ) =
m∑

Ni log (1 − h (i; θU )) +
m∑

Fi log (h (i; θU )) . (6)

i=0 i=0
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3.2.1. Left-truncated and right-censored data
Let D be either DRC or DLT RC . Then, one needs to compute 

the conditional expectation of lC (θ) given the observed data D, 
known as the Q -function, which depends on θ given θ(l)

U , to derive 
the expectation step [16], where the superscript l denotes the lth

EM iteration. Then, we have

Q
(
θ; θ(l)

U

)
= E

θ
(l)
U

[lC (θ) |D]

=
m∑

i=0

E
θ

(l)
U

[Ni|D] log (1 − h (i; θ))

+
m∑

i=0

E
θ

(l)
U

[Fi |D] log (h (i; θ)) .

(7)

Note that we use the notation E
θ

(l)
U

[lC (θ) |D] to denote

E
Y ∼DPH

(
θ

(l)
U

) [lC (θ) |D], where DPH
(
θ

(l)
U

)
has the PMF defined by 

(3).

Let Q LT RC

(
θ; θ(l)

U

)
be the Q-function for the left-truncated and 

right-censored dataset DLT RC at the lth EM iteration. Then, we 
have

Q LT RC

(
θ; θ(l)

U

)
=

nF∑
k=1

h
(

yk − 1; θ(l)
U

)
h

(
yk; θ(l)

U

) log (h (yk; θ))

+
nF∑

k=1

1{yk≥2}
yk−2∑
i=0

(
1 − h

(
i; θ(l)

U

))
log (1 − h (i; θ))

+
nB∑

k=1

Bk∑
i=0

(
1 − h

(
i; θ(l)

U

))
log (1 − h (i; θ))

+
nT F∑
k=1

h
(

zk − 1; θ(l)
U

)
h

(
zk; θ(l)

U

) log (h (zk; θ))

+
nT F∑
k=1

1{zk≥2}
zk−2∑

i=Ak+1

(
1 − h

(
i; θ(l)

U

))
log (1 − h (i; θ))

+
nC∑

k=1

Ck∑
i=A′

k+1

(
1 − h

(
i; θ(l)

U

))
log (1 − h (i; θ)) .

(8)

The derivation of Q LT RC is given in Appendix A. The maximization 
step can be computed as follows:

θ
(l+1)
U = argmax

θ∈�U

Q RC

(
θ; θ(l)

U

)
, (9)

which is subject to h (m; θU ) ∈ {0,1}, and may not have a closed 
form. In addition, it is a constraint optimization, which can 
be solved by using the sequential quadratic programming (SQP) 
method [19,9]. Hence, the proposed EM algorithm is similar to the 
EM gradient method [16], as the numerical gradient and hessian 
of Q RC

(
θ; θ(l)

U

)
are used to estimate the desired parameters.

3.2.2. Model selection (m)
There is a need of a procedure to select the number of phases 

m of the proposed approach. Let K be the number of parameters 
in θU , i.e. K = |θU |. By looking at the most widely used model 
selection methods such as Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are based on the trade-off be-
tween the goodness-of-fit of the model measured in log-likelihood 
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value at the estimated point θ̂U , i.e. l(θ̂U ) and the simplicity of the 
model measured as a function of the number of parameters, i.e. 
g(K ) [10]. Thus, the information criterion (IC) can be expressed as 
IC = l(θ̂U ) + g(K ). Our work’s goal is the estimation of θU for a 
pre-defined h(·; θU ), but the number of parameters |θU | does not 
change as m varies. Therefore, one can select the best phase m̂
with respect to only the log-likelihood function, i.e.

m̂ = argmax
m

{
max

θU ∈�U

l (θU ;m,D)

}
. (10)

4. Numerical results

4.1. Overview

All the numerical computations are performed by using MAT-
LAB software. We analyze the proposed EM algorithm by fitting 
three well-known 4-parameter hazard functions, which are

• DAddW: the discrete distribution has the following PMF

f (x) = qxθ

1 qxγ

2 − q(x+1)θ

1 q(x+1)γ

2 , (11)

where 0 < q1, q2 < 1 and θ, γ > 0 [8].
• GMW: Let us define two functions ϒ(x; θU ) and �(x; θU )

where θU = (α, β, γ , λ) such as

ϒ(x; θU ) = αβxγ −1(γ + λx)exp(λx − αxγ exp(λx)), (12)

and

�(x; θU ) = 1 − exp(−αxγ exp(γ x)). (13)

Then, the continuous distribution has the following PDF

f (x) = ϒ(x; θU )

�(x; θU )1−β
, (14)

where α, β > 0 and λ, γ ≥ 0 [11].
• EGG: Let us define the incomplete gamma ratio function as 

γ̃ (k, x) = γ (k,x)

(k)

, where γ (k, x) = ∫ x
0 wk−1e−wdw and 
(·) is 

the gamma function. Then, the continuous distribution has the 
following PDF

f (x) = λβ

α
(k)

( x

α

)βk−1
e−( x

α

)β [
γ̃

(
k,

( x

α

)β
)]λ−1

(15)

where α, β, γ , k > 0 [12].

The proposed approach is compared to specific direct methods of 
each distribution by extensive Monte Carlo simulations for left-
truncated and right-censored data (LTRCD). Each simulation exper-
iment is based on two non-monotone distributions:

• Lognormal distribution, which has a hump-shaped hazard rate, 
where we apply Lognormal (3,0.8).

• Modified Weibull (MW) distribution [20], which has a bath-
tube shaped hazard rate. MW (0.01512,0.0876,0.389) is used, 
which is a fitted model to a failure data composed of 18 de-
vices [20]. The MW’s pdf is

f MW (y;λ,α,β) = λβ
( y

α

)β−1
e
λα

(
1−e

(
y
α

)β

+( y
α

)β)
. (16)

Different datasets are sampled from each original distribution to 
evaluate the proposed methods. The data generation process for 
RCD and LTRCD experiments is similar to [3] simulation settings. 
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The stopping criterion used for the proposed EM algorithm is as 
follows:∥∥∥∥max

θ∗ Q
(
θ∗; θ̂ (l)

)
− Q

(
θ̂ (l); θ̂ (l−1)

)∥∥∥∥
2
< ε, (17)

where we choose ε = 10−2.

4.2. Evaluation metric

For evaluating how well a distribution is fitted, it is common 
practice to use the mean squared error (MSE) between the esti-
mated parameters and the parameters of the original distribution 
[3] because the same distribution is compared. However, this paper 
compares different distributions. Thus, the Jensen-Shanon diver-
gence (D J S ) is used, which is a symmetric and smoothed version 
of the Kullback-Leibler divergence (D K L ) [13]. Since a discrete dis-
tribution is compared to a continuous one, the fitted DPH can be 
considered as a piecewise constant continuous distribution, but the 
computation of D K L and D J S does not have a close form. Hence, 
this paper computes them through discretization. Let P be the pmf 
of the fitted DPH. Since the original distribution is continuous, its 
pmf is computed through discretization of its cumulative density 
function (cdf). Let Q be its pmf. The KL-divergence is computed 
as D K L (P ‖ Q ) = − 

∑
i P (i) log

(
Q (i)
P (i)

)
. Let M = 1

2 (P + Q ), which 
is a discrete mixture distribution between the fitted DPH and the 
discretized original distribution. Then, we have

D J S (P ‖ Q ) = 1

2
D K L (P ‖ M) + 1

2
D K L (Q ‖ M) . (18)

4.3. Monte Carlo simulations

In this section, the proposed EM algorithm is analyzed by com-
paring to the specific direct method for each distribution (DAddW, 
GMW, EGG). 30 different datasets are sampled from each origi-
nal distribution (lognormal, and modified Weibull) to evaluate the 
proposed method. Parameters’ estimation is based on two differ-
ent data-sizes: 30 and 100. A small dataset is used to exhibit the 
small data-size in reliability analysis, whereas a larger dataset is 
also used, which is similar to the power transformer case [3]. JSD 
is the performance metric used to evaluate the goodness-of-fit of 
the proposed approach, which is used to see how well the param-
eters are estimated compared to the original distribution. One of 
the main differences between DM and the proposed EM algorithm 
is the likelihood functions. DM is based on the PDF/PMF and CDF 
of the distribution in question, whereas the expected likelihood 
function for complete observations for the proposed EM algorithm 
is based on the sufficient statistics of the restricted DPH linked to 
the hazard function in question.

4.3.1. Graphical analysis
The dataset sampled from the MW distribution consists of 

nF = 16, nT F = 5, nB = 6 and nC = 3. In Fig. 2a, the graph shows 
a stacked histogram of failure observations in dark blue, right-
censored observations in light blue, left-truncated failure observa-
tions in green, and left-truncated right-censored observations in 
yellow. The original distribution is represented in a solid black line 
denoted as “Original”. The fitted GMW distribution via the pro-
posed EM algorithm denoted as “GMW-EM” is shown by a red 
dashed line, whereas the one fitted via the DM method using (14)
and its survival function presented in [11] is shown by a blue 
dashed line. The fitted EGG distribution via the proposed EM algo-
rithm denoted as “EGG-EM” is shown by a red dashed-dotted line, 
whereas the one fitted via the DM method using (15) and its sur-
vival function presented in [12] is shown by a blue dashed-dotted 
479
Fig. 2. Graphical results of the various models for bath-tube shaped dataset. (For 
interpretation of the colors in the figures, the reader is referred to the web version 
of this article.)

line. The fitted DAddW distribution via the proposed EM algorithm 
denoted as “DAddW-EM” is shown by a red solid line, whereas the 
one fitted via the DM method using (11) and its survival function 
presented in [8] is shown by a blue solid line. Even though the 
samples are scarce, the histogram shows that the use of censored 
and left-truncated censored observations is indispensable for a rel-
evant estimation as it helps with the tail estimation. All the six 
PDFs exhibit a similar shape than the original one except for the 
“EGG-DM”, which has a highly left-skewed shape. The graph 2b 
shows the original MW hazard rate in a solid black line, the hazard 
rates of the fitted GMW distribution via the proposed EM algo-
rithm in a red dashed line and via the DM method using (14) and 
its survival function presented in [11] in a blue dashed line, the 
hazard rates of the fitted EGG distribution via the proposed EM al-
gorithm in a red dashed-dotted line and via the DM method using 
(15) and its survival function presented in [12] in a blue dashed-
dotted line, and the hazard rates of the fitted DAddW distribution 
via the proposed EM algorithm in a red solid line and via the DM 
method using (11) and its survival function presented in [8] in a 
blue solid line. Among the six fitted hazard functions, only “GMW-
EM” and “EGG-EM” have the correct shape, where “GMW-EM” has 
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Fig. 3. Graphical results of the various models for hump shaped dataset.

the lowest JSD performance value of 0.0096. It outperforms the DM 
method “GMW-DM” for this dataset, which has a value of 0.0179. 
Similarly, for both the other two models, the proposed EM algo-
rithm performs better than the specific direct method of EGG and 
DAddW distributions. For the EGG distribution, the JSD values are 
0.0169 and 0.0196 for the proposed EM algorithm and its specific 
DM respectively, and for the DAddW distribution, the JSD values 
are 0.0126 and 0.0175 for the proposed EM algorithm and its spe-
cific DM respectively.

The dataset sampled from the lognormal distribution consists 
of nF = 18, nT F = 8, nB = 2 and nC = 2. In Fig. 3a, the graph 
shows a stacked histogram of failure observations in dark blue, 
right-censored observations in light blue, left-truncated failure ob-
servations in green, and left-truncated right-censored observations 
in yellow. The original distribution is represented in a solid black 
line denoted as “Original”. The fitted GMW distribution via the 
proposed EM algorithm denoted as “GMW-EM” is shown by a 
red dashed line, whereas the one fitted via the DM method us-
ing (14) and its survival function presented in [11] is shown by 
a blue dashed line. The fitted EGG distribution via the proposed 
EM algorithm denoted as “EGG-EM” is shown by a red dashed-
480
dotted line, whereas the one fitted via the DM method using (15)
and its survival function presented in [12] is shown by a blue 
dashed-dotted line. The fitted DAddW distribution via the pro-
posed EM algorithm denoted as “DAddW-EM” is shown by a red 
solid line, whereas the one fitted via the DM method using (11)
and its survival function presented in [8] is shown by a blue solid 
line. Similarly, the histogram shows that the use of censored and 
left-truncated censored observations is indispensable for a relevant 
estimation as it helps with the tail estimation. All the six PDFs ex-
hibit a similar shape than the original one except for “DAddW-EM” 
and “DAddW-DM”, which have much lower mode. The graph 3b 
shows the original lognormal hazard rate in a solid black line, the 
hazard rates of the fitted GMW distribution via the proposed EM 
algorithm in a red dashed line and via the DM method using (14)
and its survival function presented in [11] in a blue dashed line, 
the hazard rates of the fitted EGG distribution via the proposed 
EM algorithm in a red dashed-dotted line and via the DM method 
using (15) and its survival function presented in [12] in a blue 
dashed-dotted line, and the hazard rates of the fitted DAddW dis-
tribution via the proposed EM algorithm in a red solid line and 
via the DM method using (11) and its survival function presented 
in [8] in a blue solid line. “GMW-DM”, “EGG-EM”, and “EGG-DM” 
have the correct shape, where “EGG-EM” has the lowest JSD per-
formance value of 0.0027. It outperforms the DM method “EGG-
DM” for this dataset, which has a value of 0.0044. For the GMW 
distribution, even though “GMW-EM” fails to capture the cor-
rect shape, both methods achieve a similar performance of 0.0108 
and 0.0100 respectively. Finally, “DAddW-EM” and “DAddW-DM” 
achieve much worse performance of 0.0199 and 0.0244 respec-
tively as the DAddW distribution is incapable of modeling concave 
shape hazard function.

4.3.2. Cross-validation analysis
In this section, the proposed EM algorithm is analyzed via ex-

tensive Monte Carlo simulations to the specific DM of each hazard 
function (DAddW, GMW, and EGG). As the experiments are based 
on 30 replications, the statistics of the performance metrics are its 
mean and its standard deviation (std), and the number of correct 
fitted shapes among the 30 replications.

Table 1 depicts the statistics of the proposed EM algorithm and 
its specific DM for DAddW, GMW, and EGG models for datasets 
sampled from a MW distribution. The proposed approach shows 
similar or better performance for both data-sizes of 30 and 100, es-
pecially for the GMW distribution. For the DAddW model, one can 
notice that the JSD’s mean has the same value of 0.015 for both 
the proposed EM and DM approaches. As the data-size increases 
to 100, one can observe a significant improvement of JSD’s mean 
performance to 0.0074 and 0.0083, and of the number of correct 
fitted shapes from 13 to 22 among 30 for EM and DM approaches 
respectively due to additional information. Similar observation can 
be seen with the EGG model, where the JSD’s mean performance 
improves from 0.02 and 0.0214 to 0.013 and 0.0113 for both EM 
and DM approaches respectively. However, the proposed EM al-
gorithm outperforms the specific DM for the GMW model as the 
JSD’s mean performance is 0.0133 against 0.0265 and 0.0087 and 
0.01 for data-size 30 and 100 respectively. The reason behind this 
is the proposed EM algorithm selects the correct shape more often 
than the DM approach, which can also be observed for the other 
two models.

Table 2 shows the statistics of the proposed EM algorithm and 
its specific DM for DAddW, GMW, and EGG models for datasets 
sampled from a Lognormal distribution. The proposed approach 
shows similar or better performance for both data-sizes of 30 and 
100, especially for the GMW distribution. For the DAddW model, 
one can notice that the JSD’s mean has a similar value of 0.0305 
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Table 1
Analysis of proposed EM algorithm for MW Dist.

Original Dist. MW Dist.

# of samples 30

Pre-defined HF DAddW GMW EGG

Stats EM DM EM DM EM DM
Mean (JSD) 0.0153 0.0152 0.0133 0.0265 0.0200 0.0214
Std (JSD) 0.0105 0.0105 0.0122 0.0208 0.0099 0.0112
# of correct shapes 13 13 17 7 13 10

# of samples 100

Pre-defined HF DAddW GMW EGG

Stats EM DM EM DM EM DM
Mean (JSD) 0.0074 0.0083 0.0087 0.0100 0.0130 0.0113
Std (JSD) 0.0046 0.0035 0.0096 0.0076 0.0033 0.0044
# of correct shapes 24 23 22 18 24 23

Table 2
Analysis of proposed EM algorithm for Lognormal Dist.

Original Dist. Lognormal Dist.

# of samples 30

Pre-defined HF DAddW GMW EGG

Stats EM DM EM DM EM DM
Mean (JSD) 0.0305 0.0291 0.0196 0.0298 0.0149 0.0151
Std (JSD) 0.0117 0.0082 0.0150 0.0175 0.0146 0.0124
# of correct shapes 0 0 9 1 13 13

# of samples 100

Pre-defined HF DAddW GMW EGG

Stats EM DM EM DM EM DM
Mean (JSD) 0.0249 0.0232 0.0096 0.0148 0.0063 0.0047
Std (JSD) 0.0043 0.0030 0.0069 0.0096 0.0053 0.0036
# of correct shapes 0 0 19 10 25 28
and 0.0291 for the proposed EM and DM approaches respectively. 
As the data-size increases to 100, one can also observe an improve-
ment of JSD’s mean performance to 0.0249 and 0.0232, which is 
not significant. This is due to the fact that the DAddW distribu-
tion is incapable of expressing the hump shape pattern, which 
is why the number of correct fitted shapes are 0. For the EGG 
model, the JSD’s mean performance improves significantly from 
0.0149 and 0.0151 to 0.0063 and 0.0047 for both EM and DM 
approaches respectively. However, the proposed EM algorithm out-
performs the specific DM for the GMW model as the JSD’s mean 
performance is 0.0196 against 0.0298 and 0.0096 and 0.0148 for 
data-size 30 and 100 respectively. The reason behind this is the 
proposed EM algorithm selects the correct shape more often than 
the DM approach, which can also be observed for the other two 
models.

5. Conclusion

This paper proposed a new general EM algorithm to fit any 
desired hazard function by using the sufficient statistics of a re-
stricted DPH distribution linked to the desired hazard function 
from left-truncated and right-censored observations. From the in-
troduced approach, the derivation of the EM algorithm becomes 
straightforward, and the computation of the Q-function does not 
depend solely to a specific hazard function, but can be applied to 
any of them. The proposed EM algorithm was analyzed by compar-
ing to the specific DM of DAddW, GMW, and EGG 4-parameter dis-
tributions through extensive Monte Carlo simulations. We observed 
that the proposed approach showed similar or better performance 
with respect to the JSD performance metric for both data-sizes of 
30 and 100, especially for the GMW distribution. This was due to 
the fact that the proposed approach selects the correct shape more 
often than the DM approach.
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Areas of further research are: (i) we are currently working on 
a model-based Reinforcement Learning approach to find an ef-
fective maintenance decision-making of a heterogeneous multi-
component system such as the one presented by Barde et al. 
(2019) [4], where the transition probabilities of the model can 
be fitted through the method presented in this paper from cen-
sored and/or truncated observations. (ii) One can look for optimal 
burn-in periods of a complex multi-component system possess-
ing a bath-tube shape hazard function. (iii) One can extend the 
proposed method to continuous phase type distribution, but we 
believe that it will be challenging to solve it efficiently. (iv) Fi-
nally, one can extend the proposed methodology and the work of 
Bebbington et al. into estimating useful periods such as optimal 
burn-in or wear-out periods directly from the data [6].
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Appendix A. Derivation of Q LT RC

All the conditional expectations are derived from (7).

• Computation of E
θ

(l)
U

[
F yk |Y = yk

]
Let the sufficient statistic Fi be defined as

Fi = 1{
X yk−1=i,X yk =F

}. (A.1)

Then, we have E
θ

(l)
U

[
F yk |Y = yk

] = P
(

X yk−1 = i, X yk = F |Y =

yk
) = P

(
X yk =F |X yk−1=i

)
P

(
X yk−1=i

)
, where each term is derived 
P (Y =yk)
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as P (Y = yk) = ∏yk−1
i=0

[
1 − h

(
i; θ(l)

)]
h 

(
yk; θ(l)

U

)
, P

(
X yk =

F |X yk−1 = i
) = h 

(
i; θ(l)

U

)
, and P

(
X yk−1 = i

) ={∏yk−1
j=0

[
1 − h

(
j; θ(l)

U

)]
if i = yk − 1

0 otherwise
.

Therefore, we have

E
θ

(l)
U

[
F yk |Y = yk

] =
h

(
yk − 1; θ(l)

U

)
h

(
yk; θ(l)

U

) . (A.2)

• Computation of E
θ

(l)
U

[
F Bk |Y > Bk

]
It is straightforward to see that E

θ
(l)
U

[
F Bk |Y > Bk

] = 0 because 
failure is not observed since Y > Bk .

• Computation of E
θ

(l)
U

[Ni |Y = yk]

Let the sufficient statistic Ni be defined as

Ni = 1{yk≥2}
yk−2∑
j=0

1{
X j=i,X j+1=i+1

}. (A.3)

Then, we have E
θ

(l)
U

[Ni |Y = yk] = 1{yk≥2}
∑yk−2

j=0 P
(

X j = i,

X j+1 = i + 1|Y = yk
)
. By Bayes’ theorem, for a given j, we 

have

P
(

X j = i, X j+1 = i + 1|Y = yk
)

= P
(
Y = yk|X j+1 = i + 1

)
P

(
X j+1 = i + 1|X j = i

)
P (Y = yk)

× P
(

X j = i
)
.

Since P
(

X j = i
) = ∏ j

v=0

[
1 − h

(
v; θ(l)

U

)]
only if j = i, one 

gets E
θ

(l)
U

[
N yk |Y = yk

] = 1{yk≥2}P (Xi = i, Xi+1 = i + 1|Y =
yk). Each term can be computed as P (Y = yk|Xi+1 = i + 1) =∏yk−1

j=i+1

[
1 − h

(
j; θ(l)

U

)]
h 

(
yk; θ(l)

U

)
and P (Xi+1 = i + 1|Xi =

i) = 1 − h 
(

i; θ(l)
U

)
. Therefore, we have

Eθ(l) [Ni|Y = yk] = 1{yk≥2}
(

1 − h
(

i; θ(l)
))

. (A.4)

• Computation of E
θ

(l)
U

[Ni |Y > Bk]

Let the sufficient statistic Ni be defined as

Ni =
Bk∑

j=0

1{
X j=i,X j+1=i+1

}. (A.5)

Then, we have E
θ

(l)
U

[Ni |Y > Bk] = ∑Bk
j=0 P

(
X j = i, X j+1 = i +

1|Y > Bk
)
. By Bayes’ theorem, for a given j, we have

P
(

X j = i, X j+1 = i + 1|Y > Bk
)

= P
(
Y > Bk|X j+1 = i + 1

)
P

(
X j+1 = i + 1|X j = i

)
P (Y > Bk)

× P
(

X j = i
)
.

Each term can be computed as P (Y > Bk|Xi+1 = i + 1) =∏Bk
j=i+1

[
1 −h 

(
j; θ(l)

U

)]
and P (Y > Bk) = ∏Bk

j=0

[
1 −h 

(
j; θ(l)

U

)]
. 

Therefore, we have

E (l) [Ni|Y > Bk] =
(

1 − h
(

i; θ(l)
U

))
. (A.6)
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• Computation of E
θ

(l)
U

[
F yk |Y = yk

]
Let the sufficient statistic Fi be defined as

Fi = 1{
Xzk−1=i,Xzk =F

}. (A.7)

Then, we have E
θ

(l)
U

[
F zk |Y = zk

] = P
(

Xzk−1 = i, Xzk = F |Y =

zk
) = P

(
Xzk =F |Xzk−1=i

)
P

(
Xzk−1=i

)
P (Y =zk)

, where each term is de-

rived as P (Y = zk) = ∏zk−1
j=Ak+1

[
1 − h

(
j; θ(l)

U

)]
h 

(
zk; θ(l)

U

)
and 

P
(

Xzk−1 = i
) = ∏zk−1

j=Ak+1

[
1 − h

(
j; θ(l)

U

)]
only if i = zk − 1. 

Therefore, we have

E
θ

(l)
U

[Fi |Y = zk] =
h

(
zk − 1; θ(l)

U

)
h

(
zk; θ(l)

U

) . (A.8)

• Computation of E
θ

(l)
U

[Fi |Y > Ck]

E
θ

(l)
U

[Fi |Y > Ck] = 0 because left-truncated failures are not ob-

served.
• Computation of E

θ
(l)
U

[Ni |Y = zk]

Let the sufficient statistic Ni be defined as

Ni = 1{zk≥2}
zk−2∑

j=Ak+1

1{
X j=i,X j+1=i+1

}. (A.9)

Then, we have E
θ

(l)
U

[Ni |Y = zk] = 1{zk≥2}
∑zk−2

j=Ak+1 P
(

X j =
i, X j+1 = i + 1|Y = zk

)
. By Bayes’ theorem, for a given j, we 

have

P
(

X j = i, X j+1 = i + 1|Y = zk
)

= P
(
Y = zk|X j+1 = i + 1

)
P

(
X j+1 = i + 1|X j = i

)
P (Y = zk)

× P
(

X j = i
)
.

Since P
(

X j = i
) = ∏ j

v=Ak+1

[
1 − h

(
v; θ(l)

U

)]
only if j = i, we 

finally have

E
θ

(l)
U

[Ni|Y = zk] = 1{zk≥2}P (Xi = i, Xi+1 = i + 1|Y = zk) .

(A.10)

• Computation of E
θ

(l)
U

[Ni |Y > Ck]

Let the sufficient statistic Ni be defined as

Ni =
Ck∑

j=A′
k+1

1{
X j=i,X j+1=i+1

}. (A.11)

Then, we have E
θ

(l)
U

[Ni |Y > Ck] = ∑Ck
j=A′

k+1 P
(

X j = i, X j+1 =
i + 1|Y > Ck

)
. By Bayes’ theorem, for a given j, we have

P
(

X j = i, X j+1 = i + 1|Y > Ck
)

= P
(
Y > Ck|X j+1 = i + 1

)
P

(
X j+1 = i + 1|X j = i

)
P (Y > Ck)

× P
(

X j = i
)
.

Each term can be computed as P (Y > Ck|Xi+1 = i + 1) =∏Ck
j=i+1

[
1 − h 

(
j; θ(l)

U

)]
, P (Y > Ck) = ∏Ck

j=A′
k+1

[
1 − h 

(
j; θ(l)

U

)]
and P (xi = i) = ∏Ck

j=A′
k+1

[
1 − h 

(
j; θ(l)

U

)]
. Therefore, we have

Eθ(l) [Ni|Y > Ck] =
(

1 − h
(

i; θ(l)
))

. (A.12)



S. Barde, Y.M. Ko and H. Shin Operations Research Letters 50 (2022) 476–483
References

[1] S.J. Almalki, S. Nadarajah, Modifications of the Weibull distribution: a review, 
Reliab. Eng. Syst. Saf. 124 (2014) 32–55.

[2] S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the em 
algorithm, Scand. J. Stat. (1996) 419–441.

[3] N. Balakrishnan, D. Mitra, Left truncated and right censored Weibull data and 
likelihood inference with an illustration, Comput. Stat. Data Anal. 56 (12) 
(2012) 4011–4025.

[4] S.R. Barde, S. Yacout, H. Shin, Optimal preventive maintenance policy based 
on reinforcement learning of a fleet of military trucks, J. Intell. Manuf. 30 (1) 
(2019) 147–161.

[5] S. Barde, Y.M. Ko, H. Shin, Fitting discrete phase-type distribution from cen-
sored and truncated observations with pre-specified hazard sequence, Oper. 
Res. Lett. 48 (3) (2020) 233–239.

[6] M. Bebbington, C.-D. Lai, R. Zitikis, Useful periods for lifetime distributions 
with bathtub shaped hazard rate functions, IEEE Trans. Reliab. 55 (2) (2006) 
245–251.

[7] M. Bebbington, C.-D. Lai, R. Zitikis, A flexible Weibull extension, Reliab. Eng. 
Syst. Saf. 92 (6) (2007) 719–726.

[8] M. Bebbington, C.-D. Lai, M. Wellington, R. Zitikis, The discrete additive Weibull
distribution: a bathtub-shaped hazard for discontinuous failure data, Reliab. 
Eng. Syst. Saf. 106 (2012) 37–44.

[9] P.T. Boggs, J.W. Tolle, Sequential quadratic programming, Acta Numer. 4 (1995) 
1–51.

[10] K.P. Burnham, A Practical Information-theoretic Approach, Springer, 1998.
[11] J.M. Carrasco, E.M. Ortega, G.M. Cordeiro, A generalized modified Weibull

distribution for lifetime modeling, Comput. Stat. Data Anal. 53 (2) (2008) 
450–462.

[12] G.M. Cordeiro, E.M. Ortega, G.O. Silva, The exponentiated generalized gamma 
distribution with application to lifetime data, J. Stat. Comput. Simul. 81 (7) 
(2011) 827–842.

[13] D.M. Endres, J.E. Schindelin, A new metric for probability distributions, IEEE 
Trans. Inf. Theory 49 (7) (2003) 1858–1860.

[14] L.J.R. Esparza, B.F. Nielsen, M. Bladt, Maximum likelihood estimation of phase-
type distributions, Ph.D. thesis, Technical University of Denmark (DTU), 2011.

[15] C. Lai, M. Xie, D. Murthy, A modified Weibull distribution, IEEE Trans. Reliab. 
52 (1) (2003) 33–37.

[16] G. McLachlan, T. Krishnan, The EM Algorithm and Extensions, vol. 382, John 
Wiley & Sons, 2007.

[17] W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data, John Wiley 
& Sons, 2014.

[18] D. Mitra, Likelihood inference for left truncated and right censored lifetime 
data, Ph.D. thesis, McMaster University, 2013.

[19] J. Nocedal, S. Wright, Numerical Optimization, Springer Science & Business Me-
dia, 2006.

[20] M. Xie, Y. Tang, T.N. Goh, A modified Weibull extension with bathtub-shaped 
failure rate function, Reliab. Eng. Syst. Saf. 76 (3) (2002) 279–285.
483

http://refhub.elsevier.com/S0167-6377(22)00080-3/bib0A9CFE19F42FABBEB6EBC2078F818C4As1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib0A9CFE19F42FABBEB6EBC2078F818C4As1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib86CC083B02162B441697B8BB3CDF26A9s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib86CC083B02162B441697B8BB3CDF26A9s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibBEEB65C8D8DC286CE298E960DC832C75s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibBEEB65C8D8DC286CE298E960DC832C75s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibBEEB65C8D8DC286CE298E960DC832C75s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib4A714890CF561A981B6893813E1D4563s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib4A714890CF561A981B6893813E1D4563s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib4A714890CF561A981B6893813E1D4563s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib872E938903835F9CE091668A035452D8s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib872E938903835F9CE091668A035452D8s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib872E938903835F9CE091668A035452D8s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDCEEDDDFCB5322ACA9EAE3B3AC5F1D7Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDCEEDDDFCB5322ACA9EAE3B3AC5F1D7Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDCEEDDDFCB5322ACA9EAE3B3AC5F1D7Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib69172D4D33A7D66BCB14FE69EF596398s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib69172D4D33A7D66BCB14FE69EF596398s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib336E43FFBB031CA2CE482810C623BB02s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib336E43FFBB031CA2CE482810C623BB02s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib336E43FFBB031CA2CE482810C623BB02s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib0B740100AA6C9022C58CEB2714D2FEC4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib0B740100AA6C9022C58CEB2714D2FEC4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibF35F075B7DCBFED45195C95BDA6CAAA6s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib62BB28FA3D98392D9A37FB88269E66E4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib62BB28FA3D98392D9A37FB88269E66E4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib62BB28FA3D98392D9A37FB88269E66E4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDF68B9102D6770D848452312BE297E8Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDF68B9102D6770D848452312BE297E8Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibDF68B9102D6770D848452312BE297E8Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibCF6001E8283A5CD128093EC0CEBB0BB8s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibCF6001E8283A5CD128093EC0CEBB0BB8s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibD33FF90C5D478F059974FACEAC539B9As1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibD33FF90C5D478F059974FACEAC539B9As1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib48C4C342D303B540FB987C227C8B7E7Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib48C4C342D303B540FB987C227C8B7E7Ds1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib50396B8E2494FC19E7D460EA5A2E1891s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib50396B8E2494FC19E7D460EA5A2E1891s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib018E3F8E2E938BB42F805399898450A4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib018E3F8E2E938BB42F805399898450A4s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibD959F7ABB6631229B65E6C94CB80BA24s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bibD959F7ABB6631229B65E6C94CB80BA24s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib4DA0EF93AE8FDBAF2EC9720200F337BDs1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib4DA0EF93AE8FDBAF2EC9720200F337BDs1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib29AE24DF62A729E079344D9ECD1D8480s1
http://refhub.elsevier.com/S0167-6377(22)00080-3/bib29AE24DF62A729E079344D9ECD1D8480s1

	General EM algorithm for fitting non-monotone hazard functions from truncated and censored observations
	1 Introduction
	2 Problem description
	3 Methodology
	3.1 Restricted class of DPH distribution
	3.2 Proposed EM algorithm
	3.2.1 Left-truncated and right-censored data
	3.2.2 Model selection (m)


	4 Numerical results
	4.1 Overview
	4.2 Evaluation metric
	4.3 Monte Carlo simulations
	4.3.1 Graphical analysis
	4.3.2 Cross-validation analysis


	5 Conclusion
	Acknowledgements
	Appendix A Derivation of QLTRC
	References


