
Advanced Engineering Informatics 61 (2024) 102497

1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Traffic pattern-aware elevator dispatching via deep reinforcement learning
Jiansong Wan, Kanghoon Lee, Hayong Shin ∗

Department of Industrial and Systems Engineering, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea

A R T I C L E I N F O

Keywords:
Elevator dispatching
Semi-Markov decision process
Deep reinforcement learning
Traffic pattern awareness

A B S T R A C T

This study addresses the elevator dispatching problem using deep reinforcement learning, with a specific
emphasis on traffic pattern awareness. Previous studies on reinforcement learning-based elevator dispatching
have largely focused on training separate models for single traffic patterns, such as up-peak, down-peak, lunch-
peak, and inter-floor. This separate training approach not only introduces practical complexities by requiring
an auxiliary model to predict traffic patterns for guiding dispatching decisions but is also computationally
burdensome. In contrast, our goal is to develop a unified, traffic pattern-aware dispatching model. We
formulate the elevator dispatching problem as a Semi-Markov Decision Process (SMDP) with novel state
representation, action space, and reward function designs. To solve the formulated SMDP, we propose a Dueling
Double Deep Q-Network (D3QN) architecture associated with the training algorithm. To ensure traffic pattern
awareness, we train our model in a unified ‘All in One’ traffic scenario, employing two practical techniques to
enhance the training process: (1) temporal grouping with gradient surgery and (2) incorporation of passenger
arrival information. Empirical evaluations confirm the superiority of our model over multiple benchmarks,
including those relying on separate, pattern-specific models. Remarkably, our unified model demonstrates
robust performance across unseen traffic scenarios and performs exceptionally well in single traffic patterns
despite being trained solely on the unified ‘All in One’ scenario. The short inference time for decision-making
further solidifies the model’s practical viability. Additionally, the incremental benefits contributed by each
of our introduced techniques are also investigated. Our code is available at https://github.com/jswan95/RL-
based-traffic-pattern-aware-elevator-dispatching
1. Introduction

Elevator systems have become integral components of high-rise
buildings, facilitating vertical transportation for occupants. Typically,
these systems consist of multiple elevator cars coordinated by a central-
ized Elevator Group Control System (EGCS). The EGCS’s responsibility
is to meet all vertical transportation demands while optimizing vari-
ous performance metrics, such as Average Waiting Time (AWT), the
percentage of long-waiting calls, and energy efficiency [1]. Among
these metrics, minimizing the AWT has been a long pursuit for elevator
industry practitioners and academic researchers.

In a traditional up-down elevator system, passengers first release
a transportation request by pressing the hall buttons on each floor.
The EGCS then dispatches the request to a specific elevator car, also
known as the ’landing call assignment’ process. The assigned elevator
car proceeds to the requested floor and picks up the passengers. Finally,
the elevator car drops the passengers off at their destination floor, as
notified by passengers through the car button inside the cabin. Recent
advancements in vertical transportation technologies have given rise to

∗ Corresponding author.
E-mail addresses: jswan@kaist.ac.kr (J. Wan), leehoon@kaist.ac.kr (K. Lee), hyshin@kaist.ac.kr (H. Shin).

more sophisticated systems, including destination control [2], double-
deck [3], and multi-car elevator systems [4], to satisfy the growing
vertical transportation needs.

The effectiveness of elevator dispatching algorithms is widely ac-
knowledged as a determinant factor in reducing AWT. Ruokokoski et al.
[2] categorizes these algorithms into two primary types: immediate
assignment and delayed assignment. Immediate assignment promptly
allocates an elevator to a transportation request as soon as passengers
initiate it. On the other hand, delayed assignment defers the final
assignment decisions until the last feasible moment for making changes.
Conventional approaches to elevator dispatching encompass a spectrum
of methodologies including heuristics [5], genetic algorithms [6,7],
fuzzy logic control [8], and multi-agent systems [9]. Nevertheless, these
conventional methods struggle to achieve an even near-optimal policy
due to the complex characteristics of elevator systems and the NP-
hard nature of the elevator dispatching problem. Therefore, a promising
direction to explore is the development of self-learning methods that
enable elevator systems to autonomously reinforce their dispatching
policy [10].
474-0346/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aei.2024.102497
Received 2 November 2023; Received in revised form 12 March 2024; Accepted 17
 March 2024

https://www.elsevier.com/locate/aei
https://www.elsevier.com/locate/aei
https://github.com/jswan95/RL-based-traffic-pattern-aware-elevator-dispatching
https://github.com/jswan95/RL-based-traffic-pattern-aware-elevator-dispatching
mailto:jswan@kaist.ac.kr
mailto:leehoon@kaist.ac.kr
mailto:hyshin@kaist.ac.kr
https://doi.org/10.1016/j.aei.2024.102497
https://doi.org/10.1016/j.aei.2024.102497
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2024.102497&domain=pdf

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Reinforcement Learning (RL) is a well-established learning paradigm
that refines agent behavior through trial and error [11]. While RL’s
applicability to elevator dispatching has been explored in seminal
works such as those by Markon et al. [12], Crites and Barto [13],
their use of a simple neural network and Q-learning algorithm leaves
room for improvement, especially considering the recent advancements
in deep reinforcement learning techniques. Subsequent investigations
by Ikuta et al. [4], Jansson and Uggla Lingvall [14] further underscored
the utility of RL, developing agents to adaptively choose appropriate
dispatching rules from a heuristic pool. However, the performance of
such an approach heavily relies on the quality of the heuristic pool.
A poorly designed pool can considerably restrict the agent’s ability to
achieve optimal performance. Recently, deep learning has become the
frontier for artificial intelligence, and its combination with RL has also
gained a lot of interest [15]. In a work by Wei et al. [10], a deep
RL framework based on Asynchronous Advantage Actor-Critic (A3C)
is proposed to address the elevator dispatching problem, leveraging
the powerful feature extraction capabilities of deep neural networks
to enhance the agent’s understanding of the complex and dynamic
state of the elevator system, thereby improving the overall system
performance. However, their work assumes the availability of perfect
information, such as the number of people waiting behind the hall
call, which is often difficult to access in conventional elevator systems.
This assumption limits the practicality of their approach for real-world
implementation. Liu et al. [16] fused the information from image and
voice recognition technologies, along with the Internet of Things to
enable more nuanced RL-based decision-making.

Moreover, existing RL-based elevator dispatching studies have
largely confined their focus to single traffic patterns for both training
and testing. In real-world deployment, these pattern-oriented separate
training approaches require an auxiliary model to predict current
traffic patterns, which then selects a corresponding pre-trained model
for decision-making. Therefore, the effectiveness of the dispatching
algorithm becomes closely tied to the accuracy of the pattern-predicting
model. Notably, even if the pre-trained models exhibit high perfor-
mance under single traffic patterns, inaccuracies in pattern identi-
fication can significantly degrade the system’s overall effectiveness.
Additionally, traffic patterns do not always adhere to rigid categories.
Various traffic patterns often share overlapping characteristics within
certain time frames. This renders a pattern-predicting model, relying
on strict discrete categorization, ill-suited for handling the mixed and
dynamic nature of real-world traffic patterns.

To bridge the aforementioned research gap, this study introduces a
novel traffic pattern-aware model for elevator dispatching. Our model
first formulates the elevator dispatching problem as a Semi-Markov
Decision Process (SMDP). We then present a corresponding Dueling
Double Deep Q-Network (D3QN) architecture and training algorithm
to solve the formulated SMDP, enabling the central controller to de-
rive an effective elevator dispatching policy. To ensure traffic pattern
awareness, we train the model in a unified ‘All in One’ traffic scenario.
Moreover, we propose two practical techniques: temporal grouping
with gradient surgery and incorporating passenger arrival information,
to improve the training process under the unified traffic scenario. Em-
pirical evaluations demonstrate our model’s superiority against existing
benchmarks, including those relying on separate, pattern-specific mod-
els. Our unified model also exhibits robust performance across various
unseen traffic scenarios, further solidifying the model’s practical via-
bility. Notably, it still demonstrates outstanding performance in single
traffic patterns despite being trained exclusively in a unified ‘All in One’
scenario. Additionally, we analyze the incremental benefits contributed
by each of our introduced techniques. The main contributions of this
study can be summarized as follows:

• We formulate the elevator dispatching as an SMDP, including
novel designs of state representation, action space, and reward
function.
2

• We propose a corresponding D3QN architecture associated with
its training algorithm to optimize the elevator dispatching policy.

• We achieve traffic-pattern-aware elevator dispatching by training
the proposed model on a unified ‘All in One’ traffic scenario,
incorporating two effective practical techniques to enhance the
training process.

The remainder of this paper is structured as follows: Section 2
prepares the preliminary knowledge for this study. Section 3 provides
a detailed explanation of the SMDP formulation, including designs for
state representation, action space, and reward function. Section 4 elab-
orates on the model architecture, training algorithm, and two practical
techniques. Section 5 offers an exhaustive analysis of the empirical
results, while Section 6 draws final conclusions.

2. Preliminaries

In this section, we provide an introductory overview of semi-Markov
decision processes and value-based deep reinforcement learning to offer
readers some preliminary knowledge before delving into the details of
our model. Following that, we present a literature review regarding
traffic analysis in elevator systems.

2.1. Semi-Markov Decision Process

The Semi-Markov Decision Process (SMDP) serves as a continuous-
time extension of its discrete-time counterpart, the Markov Decision
Process (MDP). A distinguishing feature between the two frameworks
is the nature of state sojourn time: in SMDP, this time duration is repre-
sented by a general continuous random variable, as opposed to the fixed
time steps used in MDP [17]. Due to its continuous-time characteristics,
SMDP is often more well-suited for modeling decision-making problems
that occur in continuous time. Several classical algorithms initially
designed for solving MDPs, such as Temporal-Difference Learning with
eligibility traces and Q-learning, have been adapted to address SMDPs
by Bradtke and Duff [18]. The concept of ‘reward-to-go,’ also known
as ‘return,’ is also redefined in the SMDP context. While in MDPs the
return is calculated as a discounted sum of future rewards in discrete
time, SMDP employs a discounted integral of continuous-time future
rewards represented as follows:
∞
∑

𝑡=0
𝛾 𝑡𝑟𝑡 becomes ∫

∞

0
𝑒−𝛽𝜏𝑟𝜏𝑑𝜏,

where 𝑟𝑡 is the immediate reward in discrete time step 𝑡, 𝛾 ∈ [0, 1) is the
constant discount factor; 𝑟𝜏 is the instantaneous reward at continuous
time 𝜏, and 𝛽 controls the rate of exponential decay.

2.2. Deep reinforcement learning

Traditional value-based RL methods, like Q-learning and SARSA,
commonly learn a policy by updating a tabular value function for all
possible state–action pairs. However, these methods suffer from the
so-called ‘curse of dimensionality’ when applied to complex problems
with numerous state–action pairs. Deep Reinforcement Learning (DRL),
incorporating deep neural networks into RL, has attracted considerable
interest in recent years.

For value-based RL methods, DRL replaces the tabular value func-
tion with deep neural networks whose parameters implicitly repre-
sent all possible state–action values. DeepMind proposed the Deep
Q-Network (DQN), which remarkably mitigates the instability of DRL
by introducing two techniques: experience replay and a separate target
Q-network [19]. The target Q-network (parameterized by 𝜃−) with
the same structure as the main Q-network (parameterized by 𝜃) is to
generate learning targets for the main Q-network. For training stability,
the parameters of the target Q-network are updated periodically by
copying from the main Q-network. The parameters of the main Q-
network can be optimized by minimizing the empirical mean squared

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.

t

a
c
c
d
a

Temporal Difference (TD) error regarding the experience batch of size
𝑚 sampled from the experience replay buffer:

(𝜃) = 1
𝑚

∑

(𝑠,𝑎,𝑟,𝑠′)

(

𝑟 + 𝛾 max
𝑎′

𝑄𝜃−
(

𝑠′, 𝑎′
)

−𝑄𝜃 (𝑠, 𝑎)
)2

.

Following that, numerous efforts have been made to further im-
prove DRL with novel architectures or training algorithms, such as
double DQN [20], dueling architecture [21], prioritized experience
replay [22], and deep deterministic policy gradient [23]. DRL finds ap-
plications in a diverse array of industries, such as manufacturing, trans-
portation, energy management, and internet traffic management [24–
30].

2.3. Traffic analysis in elevator systems

In contrast to dispatching problems in other transportation sys-
tems [31,32], elevator systems exhibit distinct traffic patterns. There-
fore, traffic analysis is a crucial area of study in elevator systems
because different traffic flows result in various traffic patterns, necessi-
tating different dispatching policies. According to Barney and Al-Sharif
[33], traffic patterns in an office building during a typical day can
be classified into four types based on the main traffic flow feature:
up-peak (ascending from the lobby), down-peak (descending toward
the lobby), lunch-peak (both), and inter-floor (no clear predominant
flow). Accurately recognizing the traffic pattern of the elevator system
contributes to supporting EGCS dispatching decision-making, thereby
enhancing passengers’ user experience.

Numerous studies have delved into the analysis of traffic patterns
and passenger arrivals in elevator systems. So et al. [34] developed a
model recognizing five types of traffic patterns using Artificial Neural
Networks (ANNs) with nine system attributes as inputs. Subsequently,
a multi-value support vector machine-based elevator traffic pattern
classifier was proposed, showing superior performance than that of
simple ANNs [35,36]. Cortés et al. [37] proposed a fuzzy logic-based
peak traffic detection by considering information related to car load
and car direction. Sorsa et al. [38] found that modeling uncertainties
benefits solving elevator dispatching problems, and the geometric Pois-
son process outperforms the Poisson process in forecasting uncertain
demand. Sorsa et al. [39] explored the size of social groups among
passengers in office, hotel, and residential buildings, providing insights
into modeling passenger group arrivals in elevator traffic simulations.

Not only have these studies focused on analyzing traffic, but many
have also attempted to use traffic-related information to enhance dis-
patching decision-making processes. Utgoff and Connell [40] intro-
duced a Minimize Vexation, version 10 (MV10) dispatcher, which
models individual users in the system to infer more information re-
garding the current state, such as the number of users in the hallway
and car, destination of users in the hall and car, to aid decision-
making. Their model also projects hall calls in the near future for
idle car placement. Wang et al. [41] suggested integrating elevator
car occupancy information to avoid pick-up failures. Zheng et al. [42]
employed Dynamic Time Warping (DTW) and K-means clustering to
model the statistical distribution of traffic data, facilitating the opti-
mization of dispatching rules via simulation. Furthermore, Zhang et al.
[43] predicted future passenger arrivals using a Transformer network,
subsequently leveraging this data for predictive elevator dispatching.

However, a common limitation observed in these studies is the
disconnect between the traffic information extraction and decision-
making modules, introducing additional complexities in effectively
leveraging the extracted traffic information within existing dispatch-
ing models. Our model differs from these studies because the traffic
information capturing and decision-making are trained in an end-to-end
manner without any further burden of considering how to effectively
use traffic-related information for decision-making.
3

o

3. Semi-Markov Decision Process formulation

Elevator dispatching involves decision-making that affects the avail-
ability of elevator cars and passengers waiting in the future. Addi-
tionally, passengers continuously enter the elevator system and release
transportation requests. This requires us to make sequential decisions
with a potentially infinite optimization horizon. Therefore, to make
optimal dispatching decisions, it is essential to adopt a farsighted
approach that considers the impact of present decisions on future
outcomes. In this regard, we address the elevator dispatching problem
by formulating it as a Semi-Markov Decision Process (SMDP). Given
that the time intervals between discrete events are real-valued vari-
ables and the passenger arrival rates are also dynamically changing,
SMDP is more suitable for our purposes compared to an MDP. In
the following subsections, we provide detailed explanations of the
state representation, action space, and reward function of our SMDP
formulation.

3.1. State representation

The state summarizes the system’s current situation and aids the
agent’s decision-making. As illustrated in Fig. 2, our original state
representation contains two main categories of information: hall infor-
mation (red, four columns) and elevator car information (yellow, 3×𝐶
columns). Formally, the state is represented as a matrix of dimensions
𝐹 × (4+ 3×𝐶), where 𝐹 denotes the number of floors and 𝐶 represents
he number of cars. Each element located at row 𝑓 and column 𝑘 of

this matrix encodes the 𝑘th feature of the 𝑓 th floor, defined as follows:

• 𝑘 = 1 (or 2): binary, whether the up (or down) button at floor 𝑓
is pressed

• 𝑘 = 3 (or 4): real, specifies the elapsed time since the up (or down)
button at floor 𝑓 was pressed

• 𝑘 = 4 + 3 × 𝑗 + 1: binary, whether passengers will get off at floor
𝑓 from car 𝑗

• 𝑘 = 4 + 3 × 𝑗 + 2 (or 3):binary, whether car 𝑗 is currently at floor
𝑓 with a moving up (or down) state

3.2. Action space

The action space represents all possible behaviors of the agent at
a specific decision-making moment. In our formulation, each elevator
car has five possible actions: stopping at up-floor, stopping at down-
floor, passing up-floor, passing down-floor, and staying at the current
floor. We consider a single-agent view instead of a multi-agent view in
our formulation. Therefore, from the agent’s view, the total number of
possible actions amounts to 5 × 𝐶. Serving as the central controller for
all elevator cars, the agent determines actions for each car as needed. At
a decision-making moment, actions corresponding to the non-decision-
needed cars will be masked out. The remaining actions corresponding
to the unique decision-needed car may also be masked out by following
the constraints considered in previous works. For example, reversing is
not allowed until the car has served all the car buttons in the present
direction; a car cannot stop at a floor if another car has already stopped
there. The set of unmasked actions is termed the admissible actions,
denoted as 𝐴𝑡. Also, we define the discrete event (when an elevator
car arrives at a floor and finishes loading or unloading passengers if
any) as a decision event if the cardinality of the admissible action set
exceeds one, i.e., |𝐴𝑡| > 1. Upon the occurrence of a decision event, the
gent must select a particular action 𝑎𝑡 from the set 𝐴𝑡. To illustrate,
onsider Fig. 2, where actions denoted in red are associated with the
ar requiring a decision. Actions corresponding to other cars (purple
ashed) are automatically masked. Certain actions (red dashed) may
lso be masked due to pre-established rules. The final action (green

utline) is selected from the remaining admissible actions (red solid).

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.

b

3

s
t
c

d
a

𝑅

Fig. 1. Illustration of reward calculation. In this example, the reward is the sum of three partial rewards, each of which is calculated by integrating the instantaneous reward rate
etween two successive discrete events.
w
d
p
a

.3. Reward function

The reward function is designed to evaluate the agent’s action
election and optimize the decision-making process. In our framework,
he reward is computed as the sum of partial rewards between two
onsecutive decision events, which occur at times 𝑡 and 𝑡′, respectively.

Each partial reward is a discounted integral over the instantaneous
reward 𝑟𝜏 , evaluated at every time point 𝜏 between the last event time
𝑡𝑙 and the current event time 𝑡𝑐 . Suppose 𝑛 non-decision events occur
uring this transition, the total reward is mathematically represented
s:

(𝑠, 𝑎) =
∑

(𝑡𝑙 ,𝑡𝑐)∈{(𝑡,𝑡1),(𝑡1 ,𝑡2),…,(𝑡𝑛 ,𝑡′)}
∫

𝑡𝑐

𝑡𝑙
𝑒−𝛽(𝜏−𝑡)𝑟𝜏𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Partial reward

(1)

The key is how to define 𝑟𝜏 . Here we consider three variants of 𝑟𝜏 with
different exponents:

𝑟𝜏 = −

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

𝑝∈𝐻𝑃

(

𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑝

)𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
WT signal

+𝑐𝑜𝑛𝑠𝑡 ⋅
∑

𝑝∈𝐶𝑃

(

𝜏 − 𝑡𝑏𝑜𝑎𝑟𝑑𝑝

)𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
TT signal

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (2)

where 𝑖 = 0, 1, 2. The negative sign ensures that the reward function
becomes a quantity subject to maximization. The first term within
the parenthesis corresponds to the Waiting Time (WT) signal, and the
second term refers to the Travel Time (TT) signal. The constant 𝑐𝑜𝑛𝑠𝑡
serves to balance these two reward signals. For 𝑖 = 0, each passenger
𝑝 in the hall passenger set 𝐻𝑃 or the car passenger set 𝐶𝑃 produces
an identical instantaneous reward of −1 regardless of their arrival time
𝑡𝑎𝑟𝑟𝑖𝑣𝑒𝑝 or boarding time 𝑡𝑏𝑜𝑎𝑟𝑑𝑝 . When 𝑖 = 1, the instantaneous reward
scales linearly with the time a passenger has waited or traveled. For
𝑖 = 2, the reward decreases quadratically with increasing wait or travel
time, thus amplifying the urgency from the agent’s perspective. The
effects of these different definitions of instantaneous reward are empir-
ically examined in Section 5, where readers can find more analysis and
discussions.

Fig. 1 presents an example of how reward computation is per-
formed. The agent selects an action 𝑎 in state 𝑠 at 𝑡, with the next
decision event occurring at 𝑡′. This interval incorporates two non-
decision events such as passenger arrivals and boardings. Consequently,
the total reward for this transition can be expressed as:

𝑅(𝑠, 𝑎) = 𝑃𝑅1 + 𝑃𝑅2 + 𝑃𝑅3, (3)

where 𝑃𝑅 represents the partial reward. To calculate 𝑃𝑅, we need
the current event time, last event time, and last decision time. In the
example,

𝑃𝑅3 = ∫

𝑡′

𝑡2
𝑒−𝛽(𝜏−𝑡)𝑟𝜏𝑑𝜏 (4)

For further elaboration on the calculation of 𝑃𝑅 under the three differ-
ent variants of instantaneous reward, readers may refer to Appendix A.
4

4. Model architecture and training algorithms

This section elucidates the architecture and training algorithm of
our model in detail. In particular, we elaborate on the three techniques
that improve the stability and effectiveness of the training process for
a unified model.

4.1. Foundational training algorithm and architecture

Fig. 2 offers a comprehensive overview of the proposed architec-
tural design. We adopt a Deep Double Dueling Q-Network(D3QN) for
approximating the state–action value function to avoid the ‘curse of
dimensionality’. The state representation matrix initially passes through
a convolutional block, which consists of two one-dimensional convo-
lution layers. These one-dimensional convolutions operate along the
floor axis, allowing for effective feature extraction across all floors. The
convolutional block output is then flattened and fed into the state value
head and action advantage head separately. Ultimately, we compute
the estimated state–action values based on the combined outcomes of
the state values and action advantages.

To optimize the model parameters, we customize the D3QN algo-
rithm within our formulated SMDP. During training, partial rewards
accumulate following each discrete event. We then determine whether
the event is a decision event. If so, we store the new experience segment
(𝑠, 𝑎, 𝑡, 𝑅(𝑠, 𝑎), 𝑠′, 𝐴𝑡′ , 𝑡′) into a replay buffer . Later we sample a batch
of experience segments with size 𝑚 from the replay buffer for model
training. The Temporal Difference (TD) target is calculated using the
Double Q-learning algorithm as follows:

𝑞′ = 𝑅(𝑠, 𝑎) + 𝑒−𝛽(𝑡
′−𝑡)𝑄𝜃− (𝑠′, argmax𝑎′∈𝐴𝑡′

𝑄𝜃(𝑠′, 𝑎′)). (5)

It is worth noting that we employ a variable discount factor 𝑒−𝛽(𝑡′−𝑡),
hich depends on the time interval 𝑡′ − 𝑡 between two successive
ecision events. A longer time interval results in a higher discount, thus
roviding a more nuanced approach compared to the traditional use of
fixed discount factor within the conventional MDP framework.

The loss function (𝜃) is the mean square of the TD error:

(𝜃) = 1
𝑚

∑

𝑀

(

𝑞′ −𝑄𝜃 (𝑠, 𝑎)
)2 . (6)

We can optimize the loss function by performing gradient descent steps
with respect to the parameter 𝜃.

𝜃 ← 𝜃 + 𝜂 1
𝑚

∑

𝑀

(

𝑞′ −𝑄𝜃 (𝑠, 𝑎)
)

∇𝑄𝜃 (𝑠, 𝑎)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∇𝜃(𝜃)

. (7)

4.2. Special efforts for ‘All in One’ scenario: Two practical techniques

The foundational training algorithm described above is effective
enough for training agents under single traffic patterns. Moreover,
when applied directly to the ‘All in One’ scenario, it does indeed result
in an agent that exhibits a certain level of traffic pattern awareness,
owing to the experience segments from various traffic patterns stored

in the replay buffer. However, there are still several challenges because

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Fig. 2. Overview of the proposed model.
Algorithm 1: Training algorithm of the proposed model
Initialize: replay memory 𝐷𝑘 for each temporal group 𝑘;
the parameter of main Q-network 𝜃 ;
the parameter of target Q-network 𝜃− ← 𝜃;

1 while discrete event occurs
2 Calculate partial reward according to Equation(1);
3 𝑅(𝑠, 𝑎) ← 𝑅(𝑠, 𝑎) + 𝑃𝑅 ; /* Accumulate partial

reward */
4 𝑡𝑙 ← 𝑡𝑛𝑜𝑤 ; /* Update last event time */
5 if decision event then
6 𝑡′ ← 𝑡𝑛𝑜𝑤 ;
7 Get admissible actions 𝐴𝑡′ ;
8 Execute action 𝑎′ selected according to 𝜖-greedy policy;
9 Store segment (𝑠, 𝑎, 𝑡, 𝑅(𝑠, 𝑎), 𝑠′, 𝐴𝑡′ , 𝑡′) into corresponding

𝐷𝑘 ;
10 𝑠 ← 𝑠′ ; /* Update previous state */
11 𝑎 ← 𝑎′ ; /* Update previous action */
12 𝑅(𝑠, 𝑎) ← 0 ; /* Reset reward */
13 𝑡 ← 𝑡′ ; /* Update previous decision event

time */
14 Sample 𝑚 segments from each 𝐷𝑘 ;
15 Calculate TD target according to Equation(6) ;
16 Calculate losses according to Equation (7) ;
17 Gradient surgery among different temporal groups as

shown in Figure3 ;
18 Perform gradient descent with respect to 𝜃 according to

Equation(8);
19 Every 𝑇 steps: 𝜃− ← 𝜃 ;

20 until training ends;

of the dynamically changing and mixed nature of the traffic scenario,
indicating a need for improvement.

Subsequently, we introduce two highly effective practical tech-
niques aimed at enhancing the training process, thereby improving
the model’s performance within this unified scenario. Algorithm 1
presents the details of the complete training procedure. The complexity
of the proposed algorithm linearly depends on the number of temporal
groups. This dependence arises due to the necessity of calculating the
gradient of each temporal group through backpropagation. It should
be noted, however, that this aspect primarily impacts the training
time. Once the network is trained, the inference computation time for
decision-making is demonstrated to be sufficiently fast for real-time
applications, as indicated in our computation time analysis experiment.
Other contributing factors, such as the number of elevator cars and
floors, may be considered negligible for the computation time because
5

they only affect the design of the network architecture.
4.2.1. Temporal grouping with gradient surgery
The elevator system within the unified ‘All in One’ traffic scenario

operates within a dynamic and evolving environment, where dispatch-
ing policies may vary across different time periods. This is the big
challenge for training a unified agent under the ‘All in One’ traffic
scenario because the experiences collected at different time moments
might lead to different parameter updates thus harming the overall
performance. We resolve this issue via temporal grouping with gradient
surgery.

Firstly, we uniformly divide the ‘All in One’ traffic scenario into dif-
ferent time intervals. During training, we store and sample experiences
corresponding to the time interval in which the experiences happened.
This temporal grouping is essential because considering each individual
time moment independently can introduce noise and inefficiency into
the training process.

Secondly, we perform gradient surgery before updating the network
parameters to resolve the potential conflicting gradient that may arise
from different temporal groups. When gradients are derived from train-
ing samples of different temporal groups, these gradients may conflict
with each other, interfering with the performance of each other. The
situation is exacerbated when there is a significant inconsistency in
gradient scales. The performance associated with the smaller gradient
tends to be overshadowed by the one with the larger gradient. To
mitigate this issue, we suggest projecting a temporal group’s gradient
onto the orthogonal plane of the gradient of any conflicting temporal
group as shown in Fig. 3. This projection strategy effectively neutralizes
the conflicts in gradient scale and direction, resulting in more balanced
and stable training outcomes. Employing this technique offers marked
gains in training efficiency and stability for agents working within the
’All in One’ scenario. For more details of the gradient surgery algorithm,
readers can refer to the work of Yu et al. [44].

4.2.2. Incorporation of passenger arrival information
Moreover, we propose enriching the state representation by incor-

porating passenger arrival information into the original state represen-
tation matrix as shown in Fig. 4. The augmented state representation
matrix is supposed to sharpen the agent’s understanding of traffic
dynamics under the ‘All in One’ scenario.

Each element of the two added columns means the arrival rate
from(to) floor 𝑓 . The passenger arrival rate is computed according
to Eq. (8), which integrates both historical and real-time data. His-
torical data offers a prior estimation of the passenger arrival rate,
denoted by 𝜆prior. In our experiment, 𝜆prior is employed to simulate the
generation of passengers. On the other hand, real-time data is to reflect
the actual rate of passenger arrivals.

𝜆post = 𝛼 × 𝜆prior + (1 − 𝛼) ×
𝑁𝑃𝑓 (8)
𝑓 𝛥𝑡

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Fig. 3. Gradient surgery resolving conflicting gradients.
Fig. 4. The augmented state incorporates passenger arrival information into the original state representation.
Table 1
Summary of simulator settings.

System component Settings

Building
Number of floor: 20
Floor height: 3 m
Population: 1200

Car

Number of cars: 4
Capacity: 20
Door opening time: 1 s
Door closing time: 1 s
Boarding time: [1.6, 7]
Alighting time: [1.6, 7]
Full speed: 3 m/s
Acceleration: 1.5 m/s2

𝑡0,0: 2
√

2 s
𝑡0,𝐹 : 2 s
𝑡𝐹 ,0: 2 s
𝑡𝐹 ,𝐹 : 1 s

Here, 𝑁𝑃𝑓 refers to the number of passengers arriving whose origins
(or destinations) are floor 𝑓 during the most recent time window of
length 𝛥𝑡. The constant 𝛼 serves as a weighting factor to balance the
contributions of the two types of data.

5. Numerical experiment

In this section, we first describe the simulator settings for our
experiments. Then, a detailed analysis of the experiment results is
presented.

Several elevator simulators have been developed in previous lit-
erature. The Building Traffic Simulator (BTS) stands out as a tool
developed by KONE Corporation, offering a comprehensive platform
where diverse building configurations and transportation devices can
be specified. Notably, BTS enables the assessment of transportation
devices’ capabilities to manage passenger traffic in various scenarios,
including exceptional situations such as building evacuations. Another
6

noteworthy simulator is ELEVATE [45], a widely acknowledged sim-
ulation tool developed by Dr. Peter and commercialized by Peters
Research, Ltd. Cortés et al. [46] introduced SimMP, a tool designed for
planning and simulating dynamic vertical traffic. Miyamoto and Yam-
aguchi [47] developed MceSim, a multi-car elevator system simulator
specifically capturing the moving dynamics of multiple elevator cars
within a single shaft.

However, several constraints impede the utilization of existing el-
evator simulators for our study. Primarily, the majority of renowned
elevator simulators are implemented in C++, posing challenges for
integration with our reinforcement learning (RL) model, which is coded
in Python. Furthermore, most of these simulators are not publicly
accessible, creating further barriers to their utilization. To address these
limitations, we have released our Python-based elevator simulator code
to facilitate its use in future RL-based elevator dispatching studies,
thereby contributing to the accessibility and versatility of simulation
tools in this domain.

5.1. Simulation settings

Table 1 provides an overview of our simulator environment, featur-
ing a 20-floor building equipped with four elevator cars. The building’s
floor height measures 3 m. Each elevator car possesses a maximum
speed of 3 m/s and accommodates up to 20 passengers. The door
opening time and closing time default as 1 s. The boarding time and
alighting time for each passenger follow a truncated normal distribu-
tion from 1.6 to 7 with a standard deviation of 1. Our simulator takes
into account the influence of acceleration and deceleration, a crucial
factor that impacts travel times. This is accomplished by modeling
the elevator cars as uniformly accelerating from a standstill to their
maximum speed (and conversely, decelerating to a stop) over a distance
equivalent to the height of a floor. This approach enables us to calculate
the acceleration associated with different travel scenarios. For instance,
when a car passes a floor at full speed and halts at the subsequent floor,
the travel time is 2 s, denoted as 𝑡 = 2 s. In contrast, 𝑡 signifies the
𝐹 ,0 0,0

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.

T
a
T
p
𝛽

Fig. 5. The daily traffic profile used in our experiments. The arrival rate of passengers in a 5-minute period is given as a percentage of the total population of the building.
travel time when a car that has recently halted at a floor proceeds to
stop at the next one.

Within our simulator, we utilize a daily traffic profile, adapted
from the work of Hautamäki et al. [48]. As illustrated in Fig. 5, this
profile captures the traffic dynamics within an office building from
the hours of 7:00 to 19:00. It comprises three distinct traffic flows:
incoming (representing passengers moving from the lobby to other
floors), outgoing (representing passengers moving from other floors to
the lobby), and inter-floor (encompassing passengers traveling between
various floors in both upward and downward directions). These time-
varying traffic flows align with the classical elevator traffic theory and
correspond to four typical traffic patterns: up peak (7:00–10:00), inter-
floor (10:00–11:30, 14:30–16:00), lunch peak (11:30–14:30), and down
peak (16:00–19:00). We refer to the ensemble of these four traffic
patterns as the ‘All in One’ scenario.

5.2. Experiment and result analysis

Through the experimental evaluation, we aim to answer the follow-
ing research questions:

• Analysis of Instantaneous Reward: How does our model per-
form with the three different instantaneous reward definitions?

• Performance Under Single Traffic Patterns: How does the per-
formance of our model contrast with benchmark rules under typ-
ical single traffic patterns, including up-peak, inter-floor, lunch-
peak, and down-peak?

• Performance Under the ‘All in One’ Scenario: How well does
our model perform under ‘All in One’ scenario, how well our
model is traffic pattern aware, and how do the two practical
techniques benefit our model?

• Running Time Analysis: How long it takes for our model to make
a dispatching decision? Is it fast enough for real-time dispatching?

• Evaluation of Robustness: How robust is our model under dif-
ferent unseen population levels and unseen traffic profiles?

• Effect of Combining Historical Data and Real-Time Data:
What is the advantage of combining historical data and real-time
data in our model?

he general settings for our experiments are as follows. We train the
gents under four single traffic patterns for 80 simulation days each.
he ‘All In One’ scenario, being a mixture of the four single traffic
atterns, requires a training time of 320 simulation days. The constant
determining the discounting degree defaults as 0.01. The constant 𝛽

determining the discounting degree defaults to 0.01, and the balancing
factor 𝑐𝑜𝑛𝑠𝑡 in the instantaneous reward definition defaults to 0. We
use Adam as the parameter optimizer for the neural networks, with
7

Table 2
Experimental analysis of three instantaneous reward.

𝑟0 𝑟1 𝑟2
Avg WT 21.99 ± 0.18 22.00 ± 0.22 22.29 ± 0.21
Max WT 248.41 ± 42.62 222.18 ± 27.16 203.07 ± 28.55

Avg TT 44.79 ± 0.23 44.75 ± 0.40 45.15 ± 0.31
Max TT 278.56 ± 44.94 253.92 ± 20.86 239.58 ± 19.34

an initial learning rate of 5 × 10−5. The value of 𝛼 in Eq. (8), which
calculates the arrival rate, is set to 1 in all experiments, except for
experiment 5.

The benchmark rules used for comparison with our model include
Round Robin (RR), Scan, Look, and a Genetic Algorithm (GA)-based
dispatching proposed by Tartan and Ciftlikli [6], who improved upon
the method proposed in Cortés et al. [7] by replacing the existing binary
encoding with decimal encoding. This proposed decimal encoding is
easier to implement and demonstrates better performance. Another
benchmark is a Particle Swarm Optimization(PSO)-based dispatching
approach proposed by Bolat et al. [49]. The last benchmark is an RL-
based dispatching model that learns to assign newly arrived requests to
the most suitable car. This model is adapted from the RL-based Elevator
Group Control (RL-EGC) model proposed by Wei et al. [10].

To ensure the reliability of our results, we conducted each test
experiment ten times with different random seeds, each spanning a
simulation day. Each simulation is run with a 12-hour warming-up
period and a 12-hour fade-out period during which the data is not
collected for more solid analysis.

5.2.1. Analysis of instantaneous reward
This experiment empirically examines the effect of the three in-

stantaneous rewards defined in Section 3. To do so, we trained three
agents using the three reward definitions under a down-peak traffic
pattern. The results, as depicted in Fig. 6, unveil a consistent decline
in Average Waiting Time (AWT) as the training progresses, underscor-
ing the effectiveness of all three instantaneous reward definitions. In
addition, Table 2 offers insights into the performance of these reward
definitions based on both ‘Avg’ metrics (Average Waiting Time and
Average Travel Time) and ‘Max’ metrics (Maximum Waiting Time and
Maximum Travel Time). Notably, the 𝑟0 reward definition performs best
regarding the ‘Avg’ metrics due to its alignment with these metrics.
Conversely, 𝑟1 and 𝑟2 exhibit superior performance in the ‘Max’ metrics,
primarily because they consider the passenger arrival and boarding
times. This consideration results in passengers with earlier arrival
yielding fewer rewards when using 𝑟1 and 𝑟2 as the instantaneous
reward, thus forcing the agent to make more equitable decisions. 𝑟2

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.

a
t
r
A

Fig. 6. Training process of three instantaneous reward definitions.
Table 3
Average waiting time of various scenarios.

Methods AllInOne UpPeak InterFloor LunchPeak DownPeak

Benchmarks

RR – − 44.53 ± 0.95 – 36.65 ± 0.64
Scan 123.28 ± 15.69 220.93 ± 9.76 33.99 ± 0.41 141.01 ± 9.24 33.95 ± 0.22
Look 104.73 ± 12.19 170.54 ± 17.05 30.34 ± 0.30 136.48 ± 8.24 30.45 ± 0.31
GA 78.89 ± 5.11 115.73 ± 4.87 24.68 ± 0.33 120.12 ± 6.42 23.58 ± 0.24
PSO 76.11 ± 3.21 110.34 ± 5.14 24.53 ± 0.25 112.09 ± 3.11 23.32 ± 0.14
ETA 66.59 ± 3.52 95.36 ± 8.04 24.72 ± 0.32 98.00 ± 6.40 23.44 ± 0.32
RL-EGC 63.01 ± 5.54 89.18 ± 8.07 23.95 ± 0.22 92.22 ± 6.06 22.51 ± 0.26

Ours

4Separate 59.47 ± 2.89a 81.49 ± 8.33b 22.99 ± 0.15b 82.66 ± 5.71b 22.00 ± 0.22b

Unified(Basic) 61.23 ± 4.32 88.94 ± 10.42 24.30 ± 0.31 85.11 ± 5.58 25.40 ± 0.61
Unified(+GS) 52.18 ± 2.84 69.35 ± 7.45 22.95 ± 0.31 77.72 ± 1.00 21.52 ± 0.19
Unified(+GS+PAI) 47.62 ± 3.73 61.69 ± 7.61 22.78 ± 0.40 67.21 ± 1.16 21.32 ± 0.21

−: Unmeaning result because of overloading.
a Performance of RL-4Separate agent which combines the four specialized RL-Separate agents.
b Performance of RL-Separate agent for single traffic pattern.
chieves an even smaller value than 𝑟1 regarding the ‘Max’ metrics due
o its quadratic relationship. However, out of the three instantaneous
eward definitions, 𝑟2 is the farthest from our objective of minimizing
WT. Consequently, for the subsequent experiments, we opt for 𝑟1 as

the instantaneous reward definition. This choice strikes a balance by
maintaining consistency with our AWT minimization objective while
retaining fairness in decision-making processes.

5.2.2. Performance under single traffic patterns
This experiment presents a comparative analysis of our proposed

method against established benchmark rules under four single traffic
patterns. This is what most existing RL-based elevator dispatching stud-
ies have done in their experiment section. We separately trained and
evaluated four specialized RL agents, referred to as RL-Separate, each
optimized for a particular traffic pattern. As detailed in Table 3, our
model consistently demonstrates a remarkable performance edge over
the benchmark rules across all four traffic patterns, demonstrating the
effectiveness of our proposed approach. Fig. 7 illustrates the training
process of the four RL-Separate agents under each single traffic pattern.

5.2.3. Performance under ‘All in One’ scenario
In this experiment, we evaluate the effectiveness of our model under

‘All in One’ Scenario. we first trained a Unified(Basic) agent without
incorporating either of the two proposed techniques: temporal grouping
with Gradient Surgery (GS), and Passenger Arrival Information (PAI).
8

These enhancements were then incrementally added to the training of
the other two agents. In this experiment, we evenly divide the traffic
scenario into 10 temporal groups and perform gradient surgery. As
illustrated in Table 3, we observed a marked enhancement in per-
formance upon the incremental inclusion of the specified techniques,
demonstrating the effectiveness of each technique. Fig. 8 graphically
represents the training process of the three agents.

Furthermore, our enhanced Unified agent displayed exceptional
performance when tested under other single traffic patterns, demon-
strating its traffic pattern awareness. During the process of training
the Unified(+GS+PAI) agent, we segmented the performance related to
different patterns and compared it with the training performance of RL-
Separate corresponding to each pattern. We can clearly see from Fig. 7
that during training, the ability of our model to handle the four patterns
simultaneously increases and performs even better than the correspond-
ing RL-Separate agents. Most importantly, we prepared another agent,
RL-4Separate, for comparison with our Unified agent. The RL-4Separate
is a combined agent that selects corresponding pre-trained four RL-
Separate agents adaptively according to traffic patterns. Our Unified
agent with two techniques added greatly outperforms the RL-4Separate,
demonstrating that our model can be free from using an auxiliary model
to predict traffic patterns while showing superior performance, thereby
showcasing the high potential for real-life applications.

We have also trained and tested our model under different configu-
rations and three well-recognized traffic profiles (CIBSE, Strakosch, and
Siikonen). Additional results can be found in Appendix B.

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.

5

s
e
m
s
b
d

Fig. 7. AWT decreases during training time under four traffic patterns.
Fig. 8. Training process of four variants of RL-Unified agents.
.2.4. Running time analysis
As shown in Table 4, GA and PSO are very slow due to the large

earch space of decisions. ETA, as a competitive benchmark rule,
xhibits the fastest inference speed, taking only 2.59 × 10−4 seconds to
ake a dispatching decision. Our proposed model requires 5.64 × 10−4

econds, which is twice the inference time of ETA. Nevertheless, we
elieve it is sufficiently fast for making real-time elevator dispatching
ecisions, confirming its practical applicability.
9

5.2.5. Evaluation of robustness
In this experiment, we initially trained our model with a building

population of 1200 under the Hautamäki et al. [48] traffic profile and
tested it across various unseen population levels and traffic profiles to
assess its robustness.

As illustrated in Fig. 9, our enhanced Unified model consistently
outperforms both the ETA rule and the RL-4Separate model across
different population levels. Additionally, we tested the trained model

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Fig. 9. Performance under different unseen population levels.
Fig. 10. Modified traffic profile for real passenger generation.
Table 4
Comparison of running time per decision.

Running time (second)

GA 0.398
PSO 0.203
ETA 2.59 × 10−4

Ours 5.64 × 10−4

against three other unseen traffic profiles. The results are presented in
Table 5, indicating that the 4Seperate model cannot robustly handle
changing traffic profiles due to its poor generalizability. However, our
unified model consistently outperforms other methods across these
three unseen traffic profiles, where the model is not trained. This
demonstrates its more robust performance in the face of changing traf-
fic profiles. This robustness further highlights its potential for real-life
deployment.

5.2.6. Benefits of combining real-time data and historical data
In the experiments conducted thus far, we assumed that the actual

passenger arrival is the same as the prior knowledge derived from
historical data. However, the actual passenger arrival might have some
gap with the prior knowledge due to various unpredictable factors.
Thus we propose to use real-time data to bridge the gap between prior
10
Table 5
Test performance on three well-recognized traffic patterns without additional training.

CIBSE Strakosch Siikonen

ETA 212.13 ± 14.99 87.44 ± 6.80 36.97 ± 3.97
GA 181.73 ± 6.34 81.02 ± 3.92 39.46 ± 3.60
PSO 178.52 ± 9.11 83.86 ± 3.92 31.78 ± 2.60
4Seperate 197.52 ± 13.16 81.53 ± 5.56 33.39 ± 3.27
Unified(+GS+PAI) 171.24 ± 4.74 71.23 ± 3.45 25.63 ± 0.93

knowledge and actual passenger arrival. During the testing phase, we

deviated from the traffic profile illustrated in Fig. 10 for passenger

generation, introducing slight modifications to the traffic file. This

was done to simulate variations in actual passenger arrivals. We try

to combine the prior knowledge and real-time data as the passenger

arrival information. The result is demonstrated in Fig. 11. We can see

that combining prior knowledge and real-time data achieves better

performance than solely using prior knowledge or real-time data. The

result demonstrates that both two sources of data benefit the model’s
traffic pattern-aware ability, enhancing the agent’s decision-making.

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Fig. 11. Performance under different 𝛼 values.
6. Conclusion

In this study, we tackle the elevator dispatching problem by incor-
porating an awareness of various traffic patterns into a single unified
agent. In contrast to existing reinforcement learning-based elevator
dispatching studies, which have largely focused on individual traffic
patterns, we achieved a unified agent with the ability to make traffic
pattern-aware dispatching decisions for mixed traffic patterns. Our
empirical experiments validate that even though our model is trained
exclusively in a mixed ‘All in One’ scenario, it still maintains outstand-
ing performance across individual traffic patterns. Additionally, our
unified agent consistently outperforms alternative approaches that rely
on multiple, pattern-specific trained models in terms of average waiting
time. Importantly, it exhibits robust performance even when faced with
different traffic dynamics (e.g., unseen population levels and traffic
profiles).

Future investigations may seek to integrate a more sophisticated
passenger arrival prediction module, thus augmenting the model’s abil-
ity to perceive and adapt to dynamic traffic conditions. Additionally,
one can also expand the scope of the reward definition by incorpo-
rating considerations related to energy consumption, thus striking a
balance between waiting time and energy optimization. Furthermore,
our model can be adapted for use in multi-car systems, where two
or more elevator cars operate within a single elevator shaft. We hope
that our work could serve as a foundational reference, inspiring future
efforts aimed at developing RL-based traffic pattern-aware dispatching
systems that are better suited for practical, real-world deployment.

CRediT authorship contribution statement

Jiansong Wan: Writing – review & editing, Writing – original draft,
Methodology, Conceptualization. Kanghoon Lee: Writing – review &
editing, Methodology, Conceptualization. Hayong Shin: Supervision,
Project administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.
11
Acknowledgements

We thank the anonymous reviewers for their careful reading of the
manuscript and their many constructive comments and suggestions,
which greatly improve the quality of the paper.

This research was supported by the National Research Founda-
tion of Korea(NRF) funded by Ministry of Science and ICT (NRF-
2022M3J6A1063021 and NRF-5199990113928).

Appendix A. Partial reward calculation

Using the example illustrated in Fig. 1, we show how to calculate
the 𝑃𝑅2.

Case1: i = 0

𝑃𝑅2 = ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)𝑟0𝜏𝑑𝜏

= ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)

∑

𝑝
−(𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)0𝑑𝜏

= −
∑

𝑝 ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)1𝑑𝜏

= −
∑

𝑝

(

𝑒−𝛽(𝑡1−𝑡)
(

1
𝛽

)

− 𝑒−𝛽(𝑡2−𝑡)
(

1
𝛽

))

Case2: i = 1

𝑃𝑅2 = ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)𝑟1𝜏𝑑𝜏

= ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)

∑

𝑝
−(𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)𝑑𝜏

= −
∑

𝑝 ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)(𝜏 − 𝑎𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Integrate by parts

= −
∑

𝑝

(

𝑒−𝛽(𝑡1−𝑡)
(

(𝑡1 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)

𝛽
+ 1

𝛽2

)

− 𝑒−𝛽(𝑡2−𝑡)
(

(𝑡2 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)

𝛽
+ 1

𝛽2

))

Case3: i = 2

𝑃𝑅2 =
𝑡2
𝑒−𝛽(𝜏−𝑡)𝑟2𝜏𝑑𝜏
∫𝑡1

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
Fig. B.1. Three well-recognized traffic patterns [50,51].
= ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)

∑

𝑝
−(𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)2𝑑𝜏

= −
∑

𝑝
∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)(𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)2𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Integrate by parts

= −
∑

𝑝
(
[

− 1
𝛽
𝑒−𝛽(𝜏−𝑡)

(

𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝

)2
]𝑡2

𝑡1

+ 2
𝛽 ∫

𝑡2

𝑡1
𝑒−𝛽(𝜏−𝑡)

(

𝜏 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝

)

𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Integrate by parts

)

= −
∑

𝑝
𝑒−𝛽(𝑡1−𝑡)

⎛

⎜

⎜

⎜

⎝

(

𝑡1 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝

)2

𝛽
+

2
(

𝑡1 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝

)

𝛽2
+ 2

𝛽3

⎞

⎟

⎟

⎟

⎠

−
∑

𝑝
𝑒−𝛽(𝑡2−𝑡)

(

(𝑡2 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)2

𝛽
+

2(𝑡2 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑝)

𝛽2
+ 2

𝛽3

)

Appendix B. Three well-recognized traffic profiles

B.1. Redrawn traffic profiles

See Fig. B.1.

B.2. Experiments of different configurations

See Tables B.1 and B.2.
12
Table B.1
Performance under the setting of 12 floors, 4 elevator cars, 2.5 m/s car speed, 900
population.

Methods CIBSE Strakosch Siikonen

ETA 44.09 ± 5.11 21.93 ± 1.68 15.57 ± 0.28
GA 39.79 ± 5.54 18.82 ± 0.52 15.57 ± 0.24
PSO 36.44 ± 4.22 19.37 ± 1.94 15.29 ± 0.09
Unified(+GS+PAI) 33.85 ± 1.04 15.90 ± 0.28 15.12 ± 0.08

Table B.2
Performance under the setting of 16 floors, 5 elevator cars, 3 m/s car speed, 1200
population.

Methods CIBSE Strakosch Siikonen

ETA 75.89 ± 6.83 27.20 ± 2.01 15.94 ± 0.46
GA 71.70 ± 6.06 29.01 ± 3.09 15.76 ± 0.23
PSO 71.11 ± 3.55 27.99 ± 2.77 15.65 ± 0.37
Unified(+GS+PAI) 66.63 ± 4.06 19.24 ± 1.17 15.28 ± 0.23

References

[1] J.R. Fernandez, P. Cortes, A survey of elevator group control systems for vertical
transportation: A look at recent literature, IEEE Control Syst. Mag. 35 (4) (2015)
38–55.

[2] M. Ruokokoski, J. Sorsa, M.L. Siikonen, H. Ehtamo, Assignment formulation for
the elevator dispatching problem with destination control and its performance
analysis, European J. Oper. Res. 252 (2) (2016) 397–406.

http://refhub.elsevier.com/S1474-0346(24)00145-9/sb1
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb1
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb1
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb1
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb1
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb2
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb2
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb2
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb2
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb2

Advanced Engineering Informatics 61 (2024) 102497J. Wan et al.
[3] P. Cortes, J. Munuzuri, A. Vazquez-Ledesma, L. Onieva, Double deck elevator
group control systems using evolutionary algorithms: Interfloor and lunchpeak
traffic analysis, Comput. Ind. Eng. 155 (2021) 107190.

[4] M. Ikuta, K. Takahashi, M. Inaba, Strategy selection by reinforcement learning for
multi-car elevator systems, in: 2013 IEEE International Conference on Systems,
Man, and Cybernetics, IEEE, 2013, pp. 2479–2484.

[5] A. Rong, H. Hakonen, R. Lahdelma, Estimated Time of Arrival (ETA) Based
Elevator Group Control Algorithm with More Accurate Estimation, Turku Centre
for Computer Science, 2003.

[6] E.O. Tartan, C. Ciftlikli, A genetic algorithm based elevator dispatching method
for waiting time optimization, IFAC-PapersOnLine 49 (3) (2016) 424–429.

[7] P. Cortés, J. Larrañeta, L. Onieva, Genetic algorithm for controllers in elevator
groups: Analysis and simulation during lunchpeak traffic, Appl. Soft Comput. 4
(2) (2004) 159–174.

[8] J. Fernández, P. Cortés, J. Muñuzuri, J. Guadix, Dynamic fuzzy logic elevator
group control system with relative waiting time consideration, IEEE Trans. Ind.
Electron. 61 (9) (2013) 4912–4919.

[9] Q. Zong, L. Dou, W. Wang, Elevator group control scheduling approach based
on multi-agent coordination, in: 2006 6th World Congress on Intelligent Control
and Automation, vol. 2, IEEE, 2006, pp. 7249–7253.

[10] Q. Wei, L. Wang, Y. Liu, M.M. Polycarpou, Optimal elevator group control via
deep asynchronous actor–critic learning, IEEE Trans. Neural Netw. Learn. Syst.
31 (12) (2020) 5245–5256.

[11] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[12] S. Markon, H. Kita, Y. Nishikawa, Adaptive optimal elevator group control by use
of neural networks, Trans. Inst. Syst., Control Inf. Eng. 7 (12) (1994) 487–497.

[13] R.H. Crites, A.G. Barto, Elevator group control using multiple reinforcement
learning agents, Mach. Learn. 33 (2) (1998) 235–262.

[14] A. Jansson, K. Uggla Lingvall, Elevator control using reinforcement learning to
select strategy, 2015.

[15] S. Dong, P. Wang, K. Abbas, A survey on deep learning and its applications,
Comp. Sci. Rev. 40 (2021) 100379.

[16] X. Liu, J. Huang, X. Tang, Intelligent elevator scheduling algorithm based on
image recognition and voice recognition, in: International Conference on Neural
Networks, Information, and Communication Engineering, Vol. 12258, NNICE,
SPIE, 2022, pp. 306–312.

[17] M. Baykal-Gürsoy, Semi-Markov decision processes, in: Wiley Encyclopedia
of Operations Research and Management Science, John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2010.

[18] S.J. Bradtke, M.O. Duff, Reinforcement learning methods for continuous-time
Markov decision, Adv. Neural Inf. Process. Syst. 7 7 (1995) 393.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[20] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-
learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30, (no. 1) 2016.

[21] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling network
architectures for deep reinforcement learning, in: International Conference on
Machine Learning, PMLR, 2016, pp. 1995–2003.

[22] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay, 2015,
arXiv preprint arXiv:1511.05952.

[23] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv
preprint arXiv:1509.02971.

[24] S. Yang, J. Wang, Z. Xu, Real-time scheduling for distributed permutation
flowshops with dynamic job arrivals using deep reinforcement learning, Adv.
Eng. Inform. 54 (2022) 101776.

[25] J. Deng, S. Sierla, J. Sun, V. Vyatkin, Reinforcement learning for industrial
process control: A case study in flatness control in steel industry, Comput. Ind.
143 (2022) 103748.

[26] Z. Qin, J. Tang, J. Ye, Deep reinforcement learning with applications in trans-
portation, in: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 3201–3202.
13
[27] W. Qin, Z. Zhuang, Z. Huang, H. Huang, A novel reinforcement learning-based
hyper-heuristic for heterogeneous vehicle routing problem, Comput. Ind. Eng.
156 (2021) 107252.

[28] J. Xie, H. Dong, X. Zhao, A. Karcanias, Wind farm power generation control via
double-network-based deep reinforcement learning, IEEE Trans. Ind. Inform. 18
(4) (2021) 2321–2330.

[29] A. Perera, P. Kamalaruban, Applications of reinforcement learning in energy
systems, Renew. Sustain. Energy Rev. 137 (2021) 110618.

[30] S. Dong, Y. Xia, T. Peng, Network abnormal traffic detection model based on
semi-supervised deep reinforcement learning, IEEE Trans. Netw. Serv. Manag. 18
(4) (2021) 4197–4212.

[31] J. Wan, H. Shin, Predictive vehicle dispatching method for overhead hoist
transport systems in semiconductor fabs, Int. J. Prod. Res. 60 (10) (2022)
3063–3077.

[32] X. Zhang, M. Yan, B. Xie, H. Yang, H. Ma, An automatic real-time bus schedule
redesign method based on bus arrival time prediction, Adv. Eng. Inform. 48
(2021) 101295.

[33] G. Barney, L. Al-Sharif, Elevator Traffic Handbook: Theory and Practice,
Routledge, 2015.

[34] A.T. So, J. Beebe, W. Chan, S. Liu, Elevator traffic pattern recognition by artificial
neural network, in: Elevator Technology 6 Proceedings of Elevcon 1995, vol. 6,
(no. 1) 1995, p. 122.

[35] Y. Xu, F. Luo, Pattern recognition of traffic flows in elevator group control
systems based on SVM, Chinese. J. South China Univer. Technol. (Nat. Sci.)
33 (6) (2005) 32–35.

[36] Y.G. Xu, F. Luo, Traffic pattern recognition method for novel elevator system,
Kongzhi Lilun yu Yingyong/ Control Theory Appl. 22 (6) (2005) 900–904.

[37] P. Cortés, J.R. Fernández, J. Guadix, J. Muñuzuri, Fuzzy logic based controller
for peak traffic detection in elevator systems, J. Comput. Theor. Nanosci. 9 (2)
(2012) 310–318.

[38] J. Sorsa, H. Ehtamo, J.-M. Kuusinen, M. Ruokokoski, M.L. Siikonen, Modeling
uncertain passenger arrivals in the elevator dispatching problem with destination
control, Optim. Lett. 12 (2018) 171–185.

[39] J. Sorsa, M.L. Siikonen, J.M. Kuusinen, H. Hakonen, A field study and analysis
of passengers arriving at lift lobbies in social groups in multi-storey office, hotel
and residential buildings, Build. Serv. Eng. Res. Technol. 42 (2) (2021) 197–210.

[40] P.E. Utgoff, M.E. Connell, Real-time combinatorial optimization for elevator
group dispatching, IEEE Trans. Syst., Man, Cybern.-Part A: Syst. Hum. 42 (1)
(2011) 130–146.

[41] S. Wang, X. Gong, M. Song, C.Y. Fei, S. Quaadgras, J. Peng, P. Zou, J. Chen, W.
Zhang, R.J. Jiao, Smart dispatching and optimal elevator group control through
real-time occupancy-aware deep learning of usage patterns, Adv. Eng. Inform.
48 (2021) 101286.

[42] J. Zheng, H.C.T. Thomas, Y. HuaiBing, Traffic prediction for efficient elevator
dispatching, in: TENCON 2018-2018 IEEE Region 10 Conference, IEEE, 2018,
pp. 2232–2236.

[43] J. Zhang, A. Tsiligkaridis, H. Taguchi, A. Raghunathan, D. Nikovski, Transformer
networks for predictive group elevator control, in: 2022 European Control
Conference, ECC, IEEE, 2022, pp. 1429–1435.

[44] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, C. Finn, Gradient surgery for
multi-task learning, Adv. Neural Inf. Process. Syst. 33 (2020) 5824–5836.

[45] R.S. Caporale, Elevate™ traffic analysis software (eliminating the guesswork),
Elevator World 48 (6) (2000) 118–124.

[46] P. Cortés, J. Muñuzuri, L. Onieva, Design and analysis of a tool for planning and
simulating dynamic vertical transport, Simulation 82 (4) (2006) 255–274.

[47] T. Miyamoto, S. Yamaguchi, MceSim: A multi-car elevator simulator, IEICE Trans.
Fundam. Electron., Commun. Comput. Sci. 91 (11) (2008) 3207–3214.

[48] T. Hautamäki, et al., Multiobjective optimization model for elevator call
allocation, 2021.

[49] B. Bolat, O. Altun, P. Cortés, A particle swarm optimization algorithm for optimal
car-call allocation in elevator group control systems, Appl. Soft Comput. 13 (5)
(2013) 2633–2642.

[50] R. Peters, P. Mehta, J. Haddon, Lift passenger traffic patterns: Applications,
current knowledge and measurement, Elevator World 48 (9) (2000) 87–94.

[51] M.L. Siikonen, On traffic planning methodology, Elevator Technol. 10 (2000)
267–274.

http://refhub.elsevier.com/S1474-0346(24)00145-9/sb3
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb3
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb3
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb3
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb3
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb4
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb4
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb4
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb4
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb4
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb5
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb5
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb5
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb5
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb5
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb6
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb6
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb6
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb7
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb7
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb7
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb7
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb7
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb8
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb8
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb8
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb8
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb8
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb9
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb9
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb9
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb9
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb9
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb10
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb10
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb10
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb10
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb10
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb11
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb11
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb11
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb12
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb12
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb12
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb13
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb13
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb13
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb14
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb14
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb14
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb15
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb15
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb15
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb16
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb17
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb17
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb17
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb17
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb17
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb18
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb18
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb18
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb19
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb19
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb19
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb19
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb19
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb20
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb20
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb20
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb20
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb20
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb21
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb21
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb21
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb21
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb21
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb24
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb24
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb24
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb24
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb24
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb25
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb25
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb25
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb25
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb25
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb26
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb26
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb26
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb26
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb26
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb27
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb27
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb27
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb27
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb27
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb28
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb28
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb28
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb28
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb28
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb29
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb29
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb29
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb30
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb30
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb30
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb30
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb30
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb31
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb31
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb31
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb31
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb31
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb32
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb32
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb32
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb32
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb32
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb33
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb33
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb33
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb34
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb34
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb34
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb34
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb34
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb35
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb35
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb35
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb35
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb35
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb36
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb36
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb36
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb37
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb37
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb37
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb37
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb37
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb38
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb38
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb38
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb38
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb38
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb39
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb39
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb39
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb39
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb39
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb40
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb40
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb40
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb40
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb40
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb41
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb42
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb42
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb42
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb42
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb42
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb43
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb43
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb43
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb43
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb43
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb44
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb44
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb44
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb45
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb45
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb45
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb46
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb46
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb46
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb47
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb47
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb47
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb48
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb48
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb48
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb49
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb49
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb49
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb49
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb49
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb50
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb50
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb50
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb51
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb51
http://refhub.elsevier.com/S1474-0346(24)00145-9/sb51

	Traffic pattern-aware elevator dispatching via deep reinforcement learning
	Introduction
	Preliminaries
	Semi-Markov Decision Process
	Deep Reinforcement Learning
	Traffic Analysis in Elevator Systems

	Semi-Markov Decision Process Formulation
	State Representation
	Action Space
	Reward Function

	Model Architecture and Training Algorithms
	Foundational Training Algorithm and Architecture
	Special Efforts for `All in One' Scenario: Two Practical Techniques
	Temporal Grouping with Gradient Surgery
	Incorporation of Passenger Arrival Information

	Numerical Experiment
	Simulation Settings
	Experiment and Result Analysis
	Analysis of Instantaneous Reward
	Performance Under Single Traffic Patterns
	Performance Under `All in One' Scenario
	Running Time Analysis
	Evaluation of Robustness
	Benefits of Combining Real-time Data and Historical Data

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A. Partial Reward Calculation
	Appendix B. Three well-recognized traffic profiles
	Redrawn traffic profiles
	Experiments of different configurations

	References

